Mobile QR Code QR CODE : Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

ISO Journal TitleJ Korean Inst. IIIum. Electr. Install. Eng.
Title 24-Hour Load Forecasting Algorithm Using Artificial Neural Network in Summer Weekdays
Authors Kyeong-Hwan Kim ; Rae-Jun Park ; Se-Won Jo ; Kyung-Bin Song
DOI http://dx.doi.org/10.5207/JIEIE.2017.31.12.113
Page pp.113-119
ISSN 1225-1135
Keywords Load Forecasting ; Artificial Neural Network ; Artificial Intelligence
Abstract The short-term load forecasting is essential for efficient operation of electricity market, economical operation plan of generators, and prevention of outage events. 24-hour load forecasting algorithm using neural network algorithm is proposed. The input parameters of the artificial neural network are composed of time index, hourly load data, hourly temperature data for the day before the forecasting day and hourly load data, hourly temperature data for two days before the forecasting day. The output parameters are hourly load data on the forecasting day. The artificial neural network training is performed using the past 28 training cases. The min-max normalization is used as a normalization method of input parameters such as time index, hourly load data, and hourly temperature data during training. The case studies show that the average percentage errors of the proposed algorithm are improved comparing with errors of the exponential smoothing method. The proposed algorithm is expected to contribute to the efficient operation of power system and electric power market by providing more accurate predictive load value of day ahead electricity demand.