Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

  1. ์ •ํšŒ์›,ํ•œ๊ตญ์ฒ ๋„๊ธฐ์ˆ ์—ฐ๊ตฌ์› ์„ ์ž„์—ฐ๊ตฌ์›
  2. ์ •ํšŒ์›,ํ•œ๊ตญ์ฒ ๋„๊ธฐ์ˆ ์—ฐ๊ตฌ์› ์ˆ˜์„์—ฐ๊ตฌ์›, ๊ต์‹ ์ €์ž



๊ณ ์†์ฒ ๋„, ์‚ฌํ–‰๋™, ํŒŒ์žฅ, ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ•จ์ˆ˜, ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜
High-speed railway, Hunting motion, Wavelength, Risk function, Genetic algorithm

1. ์„œ ๋ก 

ํ˜„๋Œ€ ๊ณ ์†์ฒ ๋„ ์œ ์ง€๊ด€๋ฆฌ ๋ถ„์•ผ์—์„œ ๋ ˆ์ผ ๋งˆ๋ชจ ๊ด€๋ฆฌ๋Š” ์•ˆ์ „์— ์žˆ์–ด ์ค‘์š”ํ•œ ์š”์†Œ๋กœ ์ž๋ฆฌ ์žก๊ณ  ์žˆ๋‹ค(Choi et al., 2024). ๊ณ ์†์ฒ ๋„๋Š” ๋†’์€ ์†๋„๋กœ ์ธํ•ด ์—ด์ฐจ์˜ ์ง„๋™๊ณผ ์‚ฌํ–‰๋™(hunting motion) ํ˜„์ƒ์ด ๋ฐœ์ƒํ•  ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋ฉฐ, ์—ด์ฐจ ์ฃผํ–‰์‹œ ๋ฐœ์ƒํ•˜๋Š” ์‚ฌํ–‰๋™ ํ•˜์ค‘์€ ํšก๋งˆ๋ชจ๋ฅผ ์ผ์œผ์ผœ ๋ ˆ์ผ์˜ ์ˆ˜๋ช…์„ ๋‹จ์ถ•ํ‚ค์‹ ๋‹ค. ์‚ฌํ–‰๋™์€ ์ฐจ๋Ÿ‰์ด ์ง์„  ์ฃผํ–‰ ์‹œ์—๋„ ์ผ์ • ์ฃผ๊ธฐ๋งˆ๋‹ค ์ขŒ์šฐ๋กœ ํ”๋“ค๋ฆฌ๋Š” ํ˜„์ƒ์œผ๋กœ, ๊ณ ์† ์ฃผํ–‰ ์‹œ ์ง„๋™์ด ์ฆํญ๋˜์–ด ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ฑ๊ณผ ์Šน์ฐจ๊ฐ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋“ฑ ์œ„ํ—˜ํ•˜๊ฑฐ๋‚˜ ๋ถˆํŽธํ•œ ์ƒํ™ฉ์„ ์ดˆ๋ž˜ํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ์ด๋ฅผ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ์ œ์–ด ๊ธฐ๋ฒ•์ด ๊ฐœ๋ฐœ๋˜์–ด ์™”์œผ๋ฉฐ, ํŠนํžˆ ๋Œํผ ๋“ฑ์„ ํ™œ์šฉํ•œ ์‚ฌํ–‰๋™ ํŒŒ์žฅ์˜ ํ™•์žฅ์„ ํ†ตํ•ด ๊ณ ์†์ฒ ๋„์˜ ์‚ฌํ–‰๋™์„ ๊ฐ์‡ ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค(๋ณธ ์—ฐ๊ตฌ๋Š” โ€˜์‚ฌํ–‰๋™ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜โ€™๋กœ ์ •์˜). ์‚ฌํ–‰๋™์˜ ํŒŒ์žฅ์€ ์—ด์ฐจ๊ฐ€ ์ขŒ์šฐ๋กœ ํ”๋“ค๋ฆฌ๋ฉฐ ์ด๋™ํ•˜๋Š” ๋™์ž‘์˜ ์œ„์น˜์— ๋”ฐ๋ฅธ ๊ถค์ ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, Yaw ๋Œํผ์™€ ๊ฐ™์€ ๋Œ€์‘์ฑ…์„ ํ†ตํ•ด ํŒŒ์žฅ์„ ํ™•์žฅํ•˜๋ฉด ์‚ฌํ–‰๋™์ด ๊ฐ์†Œํ•˜๊ฒŒ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์‚ฌํ–‰๋™ ํŒŒ์žฅ์„ ์ง€๋‚˜์น˜๊ฒŒ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ์‹์€ ์ง€๋ฉด๊ณผ ์ˆ˜์ง์ธ ํšŒ์ „์ถ•์„ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๋Š” ์ฒ ๋„์˜ Yaw ๋™์ž‘ ์ž์ฒด๋ฅผ ์ œํ•œํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค(Wang et al., 2022). ์‚ฌํ–‰์šด๋™์˜ ์ดˆ๊ธฐ ๋ฐœ์ƒ๊ณผ ํŒŒ์žฅ ํ™•์žฅ์ด ์ฃผํ–‰ ์•ˆ์ •์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ณ ๋ คํ•  ๋•Œ, ํ™•์žฅ๊ณ„์ˆ˜๋Š” ์ฐจ๋Ÿ‰์˜ ์ฃผํ–‰ ์•ˆ์ „์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ํ†ตํ•ด ์‚ฌํ–‰์šด๋™์˜ ์ง„ํญ ์ฆ๊ฐ€์™€ ํŒŒ์žฅ ํ™•์žฅ์„ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ •์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์ค„์ด๊ณ  ์•ˆ์ „์„ฑ์„ ํ–ฅ์ƒํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค(Liang et al., 2024; Zeng et al., 2018). ์ฆ‰, ํŒŒ์žฅ์ด ๋„ˆ๋ฌด ๊ธธ์–ด์งˆ ๊ฒฝ์šฐ, ์—ด์ฐจ๋Š” ์ง์„  ๊ตฌ๊ฐ„์—์„œ๋Š” ์•ˆ์ •์ ์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ๊ธ‰๊ณก์„  ๊ตฌ๊ฐ„์—์„œ๋Š” ์ฐจ์ฒด์˜ ํšŒ์ „์ด ์ œํ•œ๋˜์–ด ํƒˆ์„ ์‚ฌ๊ณ ์˜ ๋ฆฌ์Šคํฌ๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ์‚ฌํ–‰๋™ ์–ต์ œ๋ฅผ ์œ„ํ•œ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜์˜ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ํŒŒ์žฅ์ด ๋„ˆ๋ฌด ๊ธธ์–ด์ง€๋Š” ๊ฒƒ(์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ์˜ ์ƒ์Šน)์„ ๋ฐฉ์ง€ํ•˜๊ณ , ๋™์‹œ์— ๋ ˆ์ผ ํšก ๋งˆ๋ชจ๋ฅผ ๋ฐฉ์ง€ํ•˜๊ณ  ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•  ํ•„์š”์„ฑ์ด ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค.

๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์—์„œ๋Š” ์‚ฌํ–‰๋™์ด ์ฒ ๋„ ์ฐจ๋Ÿ‰๊ณผ ์ฃผํ–‰ํ™˜๊ฒฝ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•œ ๋ฐ” ์žˆ๋‹ค. ๋จผ์ €, ์ฒ ๋„ ์ฐจ๋Ÿ‰์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‚ฌํ–‰๋™์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ‰๊ฐ€ ํ˜น์€ ์ œ์–ดํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋“ค์ด ์žˆ์—ˆ๋‹ค. ์‚ฌํ–‰๋™ ๊ฐ์‡ ์™€ ์•ˆ์ •์„ฑ์— ๋ฏธ์น˜๋Š” ์ค‘์š”์„ฑ์ด ๊ฐ„์ ‘์ ์œผ๋กœ ๊ฐ•์กฐ ๋˜์—ˆ์ง€๋งŒ, ์‚ฌํ–‰๋™ ๊ฐ์‡ ์˜ ์ ์ • ๋ฒ”์œ„์— ๋Œ€ํ•œ ์ œ์‹œ๋Š” ๋ถ€์กฑํ•˜์˜€๋‹ค(Kritikakos et al., 2024; Wang et al., 2022). Oh and Lee(2014)๋Š” ๊ณ ์†์ฒ ๋„ ์ฃผํ–‰ ์‹œ Yaw ํšŒ์ „๊ฐ์˜ ์•ˆ์ •์„ฑ์„ ์—ฐ๊ตฌํ•˜์˜€์ง€๋งŒ, Yaw ํšŒ์ „๊ฐ์„ ์ œ์–ดํ•˜์—ฌ ์‚ฌํ–‰๋™์„ ์ ์ ˆํ•˜๊ฒŒ ๊ฐ์‡ ์‹œํ‚ค๋Š” ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•˜์˜€๋‹ค(Oh and Lee, 2014). Eom et al. (2012)์€ ์†Œํ˜• ํƒˆ์„  ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ 1/5 ์ถ•์†Œ๋Œ€์ฐจ์˜ ์ฃผํ–‰์•ˆ์ •์„ฑ ์‹œํ—˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋‚˜, ์ฃผํ–‰์•ˆ์ •์„ฑ๊ณผ ์‚ฌํ–‰๋™ ํŒŒ์žฅ์˜ ๊ด€๊ณ„๋ถ„์„์€ ๋ถ€์กฑํ•˜์˜€๋‹ค(Eom et al., 2012). Jeong et al. (2023)์€ ๋„์‹œ์ฒ ๋„ ์ฐจ๋Ÿ‰์„ ๋Œ€์ƒ์œผ๋กœ ์‚ฌํ–‰๋™ ํŒŒ์žฅ๊ณผ ์ฃผํ–‰ ์†๋„๊ฐ€ ๊ต๋Ÿ‰์˜ ๋™์ ์‘๋‹ต์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์—ฐ๊ตฌํ•˜์˜€์œผ๋‚˜, ์‚ฌํ–‰๋™ ํŒŒ์žฅ์˜ ์ง€๋‚˜์นœ ํ™•์žฅ์œผ๋กœ ์ธํ•œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ์— ๋Œ€ํ•œ ๊ตฌ์ฒด์ ์ธ ๋ถ„์„์€ ๋ถ€์กฑํ•˜์˜€๋‹ค(Jeong et al., 2023). Yoon et al. (2020)์€ ๋ถ„๊ธฐ๊ธฐ ํ†ต๊ณผ์‹œ ๋ฐœ์ƒ๋˜๋Š” ์‚ฌํ–‰๋™ ๊ฑฐ๋™ ์ฆํญ ํ˜„์ƒ์„ ๋ถ„์„ํ•˜๊ณ  ์ ์ • ๊ถค๊ฐ„์„ ๋ถ„์„ํ•˜์˜€์œผ๋‚˜, ์ฐจ๋Ÿ‰์˜ Yaw ์œ ์—ฐ์„ฑ๊ณผ ๊ด€๋ จํ•˜์—ฌ ์‚ฌํ–‰๋™ ํŒŒ์žฅ์˜ ์ตœ์ ์น˜๋ฅผ ์—ฐ๊ตฌํ•˜๋Š” ๋ถ€๋ถ„์€ ๋ถ€์กฑํ•˜์˜€๋‹ค(Yoon et al., 2020).

๊ธฐ์กด์˜ ์—ฐ๊ตฌ๋“ค์€ ์‚ฌํ–‰๋™์˜ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ˜น์€ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ฑฐ๋‚˜, ์ด๋ฅผ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ๋“ค์„ ์ œ์‹œํ•ด ์™”์ง€๋งŒ ๋ชจ๋‘ ํŒŒ์žฅ์˜ ์ง€๋‚˜์นœ ํ™•์žฅ์— ๋”ฐ๋ฅธ ์—ญํšจ๊ณผ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ถ„์„ํ•˜์ง€ ์•Š์•˜๋‹ค. ์ด์— ๋”ฐ๋ผ ํŒŒ์žฅ์ด ์ตœ์  ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ์˜ ํ•จ์ˆ˜๋ฅผ ์ˆ˜๋ฆฝํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํŒŒ์žฅ ํ™•์ •๊ณ„์ˆ˜๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฆฌ์Šคํฌ ๊ธฐ๋ฐ˜์˜ ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ์„ค๊ณ„ํ•˜์—ฌ ์‚ฌํ–‰๋™ ํŒŒ์žฅ์ด ์ง€๋‚˜์น˜๊ฒŒ ๊ธธ์–ด์กŒ์„ ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์ˆ˜์น˜์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ  ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜(C)๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŠนํžˆ, ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜(Genetic Algorithm)์„ ํ™œ์šฉํ•˜์—ฌ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ•จ์ˆ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ตœ์ ํ™”ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‚ฌํ–‰๋™์„ ์–ต์ œํ•˜๋ฉด์„œ๋„ Yaw์˜ ์œ ์—ฐ์„ฑ์„ ์œ ์ง€ํ•˜์—ฌ ์ฒ ๋„ ์œ ์ง€๊ด€๋ฆฌ์™€ ์•ˆ์ „๊ณผ์˜ ๊ท ํ˜•์„ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜์˜€๋‹ค.

2. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•

Fig. 1์€ ๊ณ ์†์ฒ ๋„ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ•จ์ˆ˜(Accident Risk Function)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜(Expansion Coefficient) ์ตœ์ ํ™” ๊ณผ์ •์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ์†์ฒ ๋„ ์‚ฌํ–‰๋™์œผ๋กœ ์ธํ•œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ํŠนํžˆ ๊ณก์„  ๊ตฌ๊ฐ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์ฃผ์š” ์ธ์ž์ธ ๊ณก์„  ๋ฐ˜๊ฒฝ, ์šดํ–‰ ์†๋„ ๋“ฑ์„ ํ†ตํ•ด ์ˆ˜์น˜ํ™”ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ตœ์ ์˜ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ๋„์ถœํ•˜๋Š” ์ ‘๊ทผ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ด๋Š” ๊ณก์„  ๋ฐ˜๊ฒฝ์— ๋”ฐ๋ฅธ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๋ณ€๋™์„ฑ์„ ํŒŒ์•…ํ•˜๊ณ  ์ตœ์ ํ™”๋œ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ๋„์ถœํ•˜์—ฌ ๊ณก์„  ๊ตฌ๊ฐ„์—์„œ์˜ ์•ˆ์ •์„ฑ์„ ํ™•๋ณดํ•˜๊ณ ์ž ํ•˜๋Š” ๋ชฉ์ ์„ ๊ฐ–์ธ๋‹ค. ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์—ฌ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๊ณผ์ •์€ ํฌ๊ฒŒ ์„ธ ๋‹จ๊ณ„๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ์ฐจ๋ฅœ ๊ฐ„๊ฒฉ(Wheel Guage), ํœ  ๋ฐ˜๊ฒฝ(Wheel Radius), ๋‹ต๋ฉด ๊ตฌ๋ฐฐ(Tread Gradient), ์ถ•๊ฑฐ(Wheelbase), ์šดํ–‰ ์†๋„(Operating Speed), ๊ณก์„  ๋ฐ˜๊ฒฝ(Curve Radius) ๋“ฑ์˜ ์ฃผ์š” ์ธ์ž๋“ค์„ ์„ ์ •ํ•˜๊ณ  ๊ตฌ์ฒด์ ์ธ ์ˆ˜์น˜๋ฅผ ๋„์ถœํ•˜์—ฌ ๊ณ ์†์ฒ ๋„ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ์„ค๊ณ„๋œ ์ธ์ž ๋ฐ ์ˆ˜์น˜์— ๋Œ€ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ python ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ•จ์ˆ˜(์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ ํ•ฉ๋„ ํ•จ์ˆ˜)๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋งˆ์ง€๋ง‰ ๋‹จ๊ณ„๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜์˜ ์ตœ์ ํ™”์ด๋‹ค. ์ดˆ๊ธฐ ์„ธ๋Œ€์˜ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๊ฐ€ ์„ค์ •๋˜๋ฉด, ๊ฐ ๊ณ„์ˆ˜ ํ›„๋ณด์˜ ์ ํ•ฉ๋„(Fitness) ๋ฐ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ(Accident Risk)๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์ตœ์ ์˜ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ์ฐพ๋Š” ๊ณผ์ •์ด ๋ฐ˜๋ณต๋œ๋‹ค. ์ด์–ด์ง€๋Š” ์„ธ๋ถ€ ๋‹จ๋ฝ๋“ค์€ ๊ฐ ๋‹จ๊ณ„๋ฅผ ์ž์„ธํžˆ ์„ค๋ช…ํ•œ ๊ฒƒ์ด๋‹ค.

Fig. 1 Flowchart of Wavelength Expansion Coefficient Optimization Based on Hunting Motion-Related Accident Risk in High-Speed Railways

../../Resources/ksm/jksmi.2025.29.1.1/fig1.png

2.1 ๊ณ ์†์ฒ ๋„ ์‚ฌํ–‰๋™ ์‹œ๋‚˜๋ฆฌ์˜ค ์„ค๊ณ„

์‚ฌํ–‰๋™์€ ์ฒ ๋„ ์ฐจ๋Ÿ‰์ด ๊ณ ์† ์ฃผํ–‰ ์‹œ ๋ฐœ์ƒํ•˜๋Š” ํšŒ์ „ ์ง„๋™์œผ๋กœ, ๊ถค๋„์™€ ์ฐจ๋Ÿ‰์— ์†์ƒ์„ ์ฃผ๋ฉฐ, ์‹ฌํ•œ ๊ฒฝ์šฐ ํƒˆ์„ ์˜ ์›์ธ์ด ๋  ์ˆ˜ ์žˆ๋‹ค. Fig. 2๋Š” ์ฒ ๋„ ์ฐจ๋Ÿ‰์˜ ๊ตฌ์กฐ์™€ ๊ทธ์— ๋”ฐ๋ฅธ ์‚ฌํ–‰๋™์˜ ๋ฐœ์ƒ ํ˜•ํƒœ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ฐจ๋ฅœ๊ณผ ๊ถค๋„์˜ ์ ‘์ด‰๊ฐ๋„์ธ ๋‹ต๋ฉด ๊ตฌ๋ฐฐ(๐œ†), ์ขŒ์šฐ ์ฐจ๋ฅœ ๊ฐ„๊ฒฉ์˜ 1/2(๐‘’), ์ฐจ๋ฅœ ๋ฐ˜๊ฒฝ(๐‘Ÿ), ์ถ•๊ฑฐ์˜ 1/2(๐‘™), ์—ด์ฐจ ์œ„์น˜(๐‘–) ๋“ฑ์˜ ์š”์†Œ๊ฐ€ ์‚ฌํ–‰๋™ ํŒŒ์žฅ(๐ฟ)์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ์‚ฌํ–‰๋™ ํŒŒ์žฅ, ๊ณก์„ ๋ฐ˜๊ฒฝ(๐‘…๐ถ), ์šดํ–‰์†๋„(๐‘‰) ๋“ฑ์˜ ์š”์†Œ๊ฐ€ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ด๋Ÿฌํ•œ ์ธ์ž๋“ค์€ ์‚ฌํ–‰๋™์— ์˜ํ–ฅ์„ ๋ผ์ณ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ •์„ฑ ๋ฐ ์ฃผํ–‰ ํŠน์„ฑ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฉฐ, ์‚ฌํ–‰๋™ ์ œ์–ด๋ฅผ ์œ„ํ•ด ๊ณ ๋ ค๋˜์–ด์•ผ ํ•œ๋‹ค. ์‚ฌํ–‰๋™ ํŒŒ์žฅ์€ (a)๋ถ€ํ„ฐ (b)์ง€์ ์˜ ๊ธธ์ด์— ํ•ด๋‹นํ•˜๊ฒŒ ๋˜๋ฉฐ, ๊ณ ์†์ฒ ๋„์—์„œ๋Š” ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค.

Fig. 2 The Structure of Railway Vehicles and the Generation Pattern of Hunting Wavelength

../../Resources/ksm/jksmi.2025.29.1.1/fig2.png

Yaw ๋Œํผ๋Š” ์ฐจ์ฒด ํ˜น์€ ๋Œ€์ฐจ์— ๊ฐœ์ž…์‹œ์ผœ ์ ‘์†ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ, ์‚ฌํ–‰๋™์„ ๊ฐ์‡ ํ•˜๋Š”๋ฐ ํšจ๊ณผ์ ์ธ ์ˆ˜๋‹จ ์ค‘ ํ•˜๋‚˜๋กœ ํ‰๊ฐ€๋ฐ›๊ณ  ์žˆ๋‹ค. Yaw ๋Œํผ๋Š” ์ฐจ์ฒด์™€ ๋Œ€์ฐจ ์‚ฌ์ด์—์„œ ํšŒ์ „์šด๋™(Yaw motion)์„ ์ œ์–ดํ•˜๋Š” ์—ญํ• ์„ ํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์‚ฌํ–‰๋™์„ ์–ต์ œํ•œ๋‹ค. Yaw ๋Œํผ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ์ €ํ•ญ๋ ฅ(๐น๐ท)์ด ํšŒ์ „์†๋„(๐œƒ)์— ๋น„๋ก€ํ•˜๋Š” ํ˜•ํƒœ๋กœ ์ˆ˜์‹ํ™” ๋œ๋‹ค. ์‹ (1)์€ Yaw ๋Œํผ์˜ ๊ฐ์‡ ๋ ฅ๊ณผ ๊ฐ์†๋„ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋ฉฐ, C๐ท๋Š” ๋Œํผ์˜ ๊ฐ์‡ ๊ณ„์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค(Garg, 2012). ์‹ (2)๋Š” ํŒŒ์žฅ๊ณผ ๊ณก์„ ๋ฐ˜๊ฒฝ์— ์˜ํ•œ Yaw ๊ฐ๋„๋ฅผ ๊ตฌํ•˜๋Š” ๊ณผ์ •์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋ฉฐ, ๐ฟ์€ ํŒŒ์žฅ, ๐‘…๐ถ๋Š” ๊ณก์„  ๋ฐ˜๊ฒฝ(ํšŒ์ „ ๋ฐ˜์‘)์„ ๋‚˜ํƒ€๋‚ธ๋‹ค(Iwnicki, 2006). ํŒŒ์žฅ์ด ๋Š˜์–ด๋‚˜๋Š” ๊ฒƒ์€ ์‚ฌํ–‰๋™์—์„œ ์ฐจ๋Ÿ‰์˜ ํšŒ์ „์šด๋™์ด ์ปค์ง€๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. Yaw ํ–‰๋™์€ ์ฐจ๋Ÿ‰์ด ๊ณก์„  ๊ตฌ๊ฐ„์—์„œ ๊ถค๋„๋ฅผ ๋”ฐ๋ผ ํšŒ์ „ํ•ด์•ผ ํ•˜๋Š” ๋™์ž‘์ธ๋ฐ, ํŒŒ์žฅ์ด ๊ธธ์–ด์ง€๋ฉด ์ฐจ๋Ÿ‰์˜ ํšŒ์ „์šด๋™์ด ์ œํ•œ๋œ๋‹ค. ์ฆ‰, ์ฐจ๋Ÿ‰์˜ ํšŒ์ „ ์šด๋™์ด ์–ต์ œ๋˜๋ฉด์„œ ์ฐจ๋Ÿ‰์˜ ์œ ์—ฐ์„ฑ์ด ๊ฐ์†Œํ•˜๊ณ , ๊ธ‰๊ณก์„  ๊ตฌ๊ฐ„์—์„œ ์ฐจ์ฒด๊ฐ€ ํšŒ์ „ํ•˜์ง€ ๋ชปํ•ด ์œ„ํ—˜์„ฑ์ด ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋œ๋‹ค. ์‹ (2)๋Š” ํŒŒ์žฅ์ด ๊ธธ์–ด์งˆ์ˆ˜๋ก ์ฐจ๋Ÿ‰์˜ ํšŒ์ „ ๋ฐ˜์‘์ด ๋‘”ํ•ด์ ธ ๊ณก์„ ์—์„œ ์›ํ™œํ•œ ํšŒ์ „์ด ์ œํ•œ๋œ๋‹ค๋Š” ๋ฌผ๋ฆฌ์  ์˜๋ฏธ๋ฅผ ์„ค๋ช…ํ•˜์—ฌ ์ฃผ๋ฉฐ, ์ฐจ๋Ÿ‰ ์‚ฌํ–‰๋™ ํ™•์žฅ๊ณ„์ˆ˜ ๋ฐ ํŒŒ์žฅ์˜ ์ตœ์ ํ™”๊ฐ€ ํ•„์š”ํ•œ ์ด์œ ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.

(1)
$F_{D}=C_{D}*\dot{\theta}$
(2)
$\theta =\dfrac{L}{R_{C}}$

Table 1์€ ๊ณ ์†์ฒ ๋„ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๋ถ„์„์„ ์œ„ํ•œ ์ฃผ์š” ์ธ์ž๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์‚ฌํ–‰๋™ ํŒŒ์žฅ(๐ฟ)๊ณผ ์šดํ–‰ ์†๋„(๐‘‰)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ , ์ตœ์ ์˜ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜(๐ถ)๋ฅผ ๋„์ถœํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋œ๋‹ค. ์ขŒ์šฐ ์ฐจ๋ฅœ ๊ฐ„๊ฒฉ์˜ 1/2 (๐‘’)์€ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ •์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์†Œ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 0.7175 m๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์ฐจ๋ฅœ ๋ฐ˜๊ฒฝ (๐‘Ÿ)์€ 0.46 m๋กœ ์„ค์ •๋˜์–ด ์ฐจ๋Ÿ‰์˜ ์ฃผํ–‰ ์•ˆ์ •์„ฑ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๋‹ต๋ฉด ๊ตฌ๋ฐฐ (๐œ†)๋Š” ์ฒ ๋„ ์„ค๊ณ„ ๊ธฐ์ค€์— ๋”ฐ๋ผ 1/20์— ํ•ด๋‹นํ•˜๋Š” 0.05๋กœ ์„ค์ •๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ์‚ฌํ–‰๋™์„ ์ค„์ด๋Š” ๋ฐ ๊ธฐ์—ฌํ•œ๋‹ค.

์ถ•๊ฑฐ์˜ 1/2 (๐‘™)์€ 1.25 m๋กœ ์„ค์ •๋˜์—ˆ๊ณ , ์ดˆ๊ธฐ ์œ„์ƒ๊ฐ (๐œ‘)์€ 0 radian์œผ๋กœ ์„ค์ •๋˜์–ด ์‚ฌํ–‰๋™ ๋ฐœ์ƒ ์‹œ ์ง„๋™์˜ ์ดˆ๊ธฐ ์กฐ๊ฑด์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ฐจ๋Ÿ‰ ์œ„์น˜(๐‘–)๋Š” 0 m์—์„œ 300 m ๋ฒ”์œ„ ๋‚ด์—์„œ ์„ค์ •๋˜์–ด ์‚ฌํ–‰๋™ ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. 0์—์„œ 300 m ๊ตฌ๊ฐ„์€ ๋‹ค์–‘ํ•œ ์‚ฌํ–‰๋™ ํŒŒ์žฅ์„ ๊ฐ€์‹œํ™”ํ•˜๊ธฐ์— ์ ํ•ฉํ•œ ๋ฒ”์œ„๋กœ, ์ฐจ๋Ÿ‰ ์ง„๋™ ํŒจํ„ด๊ณผ ํŒŒ์žฅ ๋ณ€ํ™”๋ฅผ ์ฃผ๊ธฐ์ ์œผ๋กœ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๊ตฌ๊ฐ„์—์„œ ํŒŒ์žฅ์˜ ์ฃผ๊ธฐ์™€ ์ง„ํญ์„ ๋‹ค์–‘ํ•œ ์กฐ๊ฑด์—์„œ ์•ˆ์ •์ ์œผ๋กœ ๋น„๊ตํ•  ์ˆ˜ ์žˆ์–ด, ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ์ผ๊ด€์„ฑ๊ณผ ๋ฐ์ดํ„ฐ ์ •๋ฐ€์„ฑ์„ ๋†’์ด๋Š” ๋ฐ ๊ธฐ์—ฌํ•œ๋‹ค. ์‚ฌํ–‰๋™ ์ง„ํญ (๐ด)์€ 0.007 m๋กœ ์„ค์ •๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ๊ณ ์†์ฒ ๋„์˜ ์ง„๋™ ํŠน์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์š”์†Œ์ด๋‹ค.

๋ฆฌ์Šคํฌ ์ฆ๊ฐ€ ๊ณ„์ˆ˜ (๐›ผ)๋Š” 0.02๋กœ ์„ค์ •๋˜์—ˆ๊ณ , ์ด๋Š” ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜์™€ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ์ฆ๊ฐ€์˜ ๋ฏผ๊ฐ๋„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์šดํ–‰ ์†๋„ (๐‘‰)๋Š” KTX ์‚ฐ์ฒœ์˜ ํ‰๊ท  ์†๋„์ธ 300 km/h๋กœ ์„ค์ •๋˜์—ˆ๊ณ , ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ์ตœ์†Œ๊ฐ’ (๐‘…min)์€ 1๋กœ ์„ค์ •ํ•˜์—ฌ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ‰๊ฐ€์˜ ๊ธฐ์ค€์„ ์ œ์‹œํ•œ๋‹ค. ๊ณก์„  ๋ฐ˜๊ฒฝ (๐‘…๐ถ)์€ 4700 m๋กœ ์„ค์ •๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ๊ณ ์†์ฒ ๋„ ๊ณก์„  ๊ตฌ๊ฐ„์—์„œ์˜ ์•ˆ์ •์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ์ค‘์š”ํ•œ ๋ณ€์ˆ˜์ด๋‹ค. ๋ฆฌ์Šคํฌ ์ฆ๊ฐ€ ๊ณ„์ˆ˜ (๐‘˜)๋Š” 0.001๋กœ ์„ค์ •๋˜์–ด ์†๋„์™€ ํŒŒ์žฅ์ด ์ฆ๊ฐ€ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ฆฌ์Šคํฌ๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค. ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜ (๐ถ)๋Š” 0์—์„œ 1 ์‚ฌ์ด์˜ ๊ฐ’์„ ๊ฐ€์ง€๋ฉฐ, ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ตœ์ ํ™”๋œ๋‹ค.

Table 1 List of Factors for Hunting Motion Risk Analysis

Factor

Symbol

Input value

Reference

Range

Unit

Half of Lateral Wheel Gauge

(โ‰’ Half of Track Gauge)

๐‘’

0.7175

(Division, 2022)

0 or more

m

Wheel Radius

๐‘Ÿ

0.46

(Division, 2024a)

0 or more

m

Tread Gradient

๐œ†

0.05 (1/20)

(Division, 2024b)

0.025-0.1

-

Half of Wheelbase

๐‘™

1.25

(contributors, 2024b)

0 or more

m

Initial Phase Angle

๐œ‘

0

-

0 or more

radian

Vehicle Position

๐‘–

0-300

-

0 or more

m

Amplitude

๐ด

0.007

(Ning et al., 2023)

0 or more

m

Risk Increment Coefficient

๐›ผ

0.02

(Yan et al., 2019)

0-1

-

Operating Speed

๐‘‰

300

(contributors, 2024a)

70-400

Km/h

Minimum Risk Value

๐‘…min

1

-

1

-

Curve Radius

๐‘…๐ถ

4700

(Division, 2022)

4,700-10,000

m

Risk Increment Coefficient (Depending on Speed and Wavelength)

๐‘˜

0.001

(Yan et al., 2019)

0-1

-

Wavelength Expansion Coefficient

๐ถ

Optimization Target

-

0-1

-

2.2 ๊ณ ์†์ฒ ๋„ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ•จ์ˆ˜ ์„ค๊ณ„

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ฌํ–‰๋™ ํŒŒ์žฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ตœ์ ํ™”ํ•˜๋Š” ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ•จ์ˆ˜๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ๋จผ์ €, ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ•จ์ˆ˜์˜ ์ฃผ์š” ์ž…๋ ฅ ์ธ์ž์ธ ์‚ฌํ–‰๋™ ํŒŒ์žฅ(๐ฟ)์€ ์‹ (3)์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์‹ (3)์—์„œ โ€˜๐‘Ÿโ€™์€ ์ฐจ๋ฅœ ๋ฐ˜๊ฒฝ(๋‹จ์œ„: m), โ€˜๐‘’โ€™๋Š” ์ขŒ์šฐ ์ฐจ๋ฅœ ๊ฐ„๊ฒฉ์˜ 1/2(๋‹จ์œ„: m), โ€˜๐œ† โ€™๋Š” ๋‹ต๋ฉด ๊ตฌ๋ฐฐ, โ€˜๐ถโ€™๋Š” ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค(Lee and Choi, 2003). ์‹ (3)์€ ์‚ฌํ–‰๋™ ํŒŒ์žฅ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ํ†ตํ•ด ํŒŒ์žฅ์˜ ๊ธธ์ด๋ฅผ ๋Š˜๋ ค ์‚ฌํ–‰๋™์„ ์–ต์ œํ•˜๋Š” ์—ญํ• ์„ ํ•˜๊ฒŒ ๋œ๋‹ค. ์‚ฌํ–‰๋™ ํŒŒํ˜•(๐‘Š)๋Š” ํŠน์ • ์œ„์น˜ โ€˜๐‘–โ€™์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํŒŒํ˜•(๋‹จ์œ„: m)์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์‚ฌ์ธ ํ•จ์ˆ˜๋กœ ํ‘œํ˜„๋œ๋‹ค. ์‹ (4)์—์„œ โ€˜๐ดโ€™๋Š” ์ง„ํญ(๋‹จ์œ„: m), โ€˜๐œ‘โ€™๋Š” ์ดˆ๊ธฐ ์œ„์ƒ๊ฐ(๋‹จ์œ„: radian)์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

(3)
$L=2\pi\sqrt{\dfrac{er}{\lambda}}\sqrt{1+\dfrac{l^{2}}{e^{2}}}(1+C)$
(4)
$W=A*\sin(\dfrac{2\pi}{\lambda}+\varphi),\: i=1-300(m)$

์‹ (5)์— ๋‚˜ํƒ€๋‚œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ•จ์ˆ˜๋Š” ํŒŒ์žฅ์ด ๋ฌธํ—Œ์กฐ์‚ฌ์— ๋”ฐ๋ผ ์ตœ์  ๊ฐ’์œผ๋กœ ์ถ”๋ก  ๋œ 50 m( ๊ฐ’์— ๋”ฐ๋ผ ์œ ๋™์ ์œผ๋กœ ๋ณ€๊ฒฝ)์—์„œ ๋ฒ—์–ด๋‚  ๋•Œ ์ฆ๊ฐ€ํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ๋”ฐ๋ฅธ๋‹ค(Kaiser et al., 2019). Kaiser et al. (2019)์˜ ์—ฐ๊ตฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌํ–‰๋™ ํŒŒ์žฅ์ด 50 m๊นŒ์ง€ ๊ธธ์–ด์ง€๋ฉด ์ฐจ๋Ÿ‰์˜ ํšก๋ฐฉํ–ฅ ์šด๋™์ด ์•ˆ์ •ํ™” ๋˜์–ด ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๊ฐ€ ๋‚ฎ์•„์ง€๊ณ , 50 m๋ฅผ ์ดˆ๊ณผํ•˜๊ฒŒ ๋˜๋ฉด ํœ -๋ ˆ์ผ ์ ‘์ด‰ ์œ„์น˜๊ฐ€ ๋ณ€ํ•˜๋ฉด์„œ ํšก ๋ฐฉํ–ฅ ํž˜์ด ๊ธ‰์ฆํ•ด ํƒˆ์„  ์œ„ํ—˜์ด ์ปค์ง„๋‹ค๊ณ  ์ถ”์ •ํ• ์ˆ˜ ์žˆ๋‹ค. ๊ธ‰๊ณก์„  ๊ตฌ๊ฐ„( ๊ฐ’: 4700 m)์—์„œ ์‚ฌํ–‰๋™ ํŒŒ์žฅ์ด 50 m ๊ธฐ์ค€์„ ์—„๊ฒฉํžˆ ์œ ์ง€ํ•˜๋ฉฐ, ๊ณก์„ ๋ฐ˜๊ฒฝ์ด ์ปค์งˆ์ˆ˜๋ก ์ƒ์Šน๋น„์œจ์— ๋”ฐ๋ผ ๊ธฐ์ค€์„ ์™„ํ™”ํ•˜๋„๋ก ์‹ (5)์˜ ํ•จ์ˆ˜๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์‹ (5)์—์„œ โ€˜๐‘…๐ถโ€™๋Š” ๊ณก์„  ๋ฐ˜๊ฒฝ(๋‹จ์œ„: m), โ€˜๐‘‰โ€™๋Š” ์šดํ–‰์†๋„(๋‹จ์œ„: m/s)๋ฅผ ๋œปํ•˜๋ฉฐ, ์ด๋ฅผ ๋ฐ˜์˜ํ•˜์—ฌ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๊ฐ€ ๊ณ„์‚ฐ๋œ๋‹ค. ์‹ (5)์—์„œ โ€˜๐‘…๐ถ/4700โ€™ ๋ถ€๋ถ„์€ ์„ค๊ณ„ ์ตœ๊ณ ์†๋„ 350 km/h์—์„œ ์ตœ์†Œ ๊ณก์„ ๋ฐ˜๊ฒฝ 4700 m๋ฅผ ๊ธฐ์ค€์œผ๋กœ, ๊ณก์„ ๋ฐ˜๊ฒฝ์ด ์ปค์งˆ์ˆ˜๋ก ์‚ฌํ–‰๋™ ํŒŒ์žฅ์˜ ํ—ˆ์šฉ๊ฐ’์ด ๊ธธ์–ด์ง€๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค(Division, 2022). ์ด๋Š” ๊ณก์„ ๋ฐ˜๊ฒฝ์ด ์ž‘์„์ˆ˜๋ก ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๊ฐ€ ์ปค์ง€๊ณ , ํŒŒ์žฅ์ด ์ตœ์  ๋ฒ”์œ„์—์„œ ๋ฒ—์–ด๋‚  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋ฆฌ์Šคํฌ๋ฅผ ๋ฐ˜์˜ํ•œ ๋ถ€๋ถ„์ด๋‹ค. ๋˜ํ•œ, ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋Š” ์†๋„์™€ ๊ณก์„  ๋ฐ˜๊ฒฝ์— ๋น„๋ก€ํ•ด ์ปค์ง€๊ฒŒ ๋œ๋‹ค. ์‹ (6)๋Š” ์—ด์ฐจ์˜ ์šดํ–‰์†๋„๋ฅผ km/h์—์„œ m/s๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ณต์‹์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋ฉฐ, ๋‹จ์œ„๊ฐ€ ๋ณ€ํ™˜๋œ ์šดํ–‰์†๋„๊ฐ€ ์‹ (5)์— ์ž…๋ ฅ๋œ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ๋„์ถœ๋œ ์‹ (5)์˜ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ•จ์ˆ˜๋Š” ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๊ณ  ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜์˜ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ๋ฆฌ์Šคํฌ๋ฅผ ์ค„์ด๋Š” ๋ฐ ํ™œ์šฉ๋œ๋‹ค.

(5)
$R=\alpha(L-50\sqrt{\dfrac{R_{C}}{4700}})^{2}+k\dfrac{V^{2}}{L}+R_{\min}$
(6)
$V(m/s)=V(km/h)*1000(m)/3600(s)$

2.3 ๊ณ ์†์ฒ ๋„ ์‚ฌํ–‰๋™ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•

์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‹ค์–‘ํ•œ ํ•ด๋ฅผ ํƒ์ƒ‰ํ•˜๋ฉฐ ๊ต์ฐจ์™€ ๋Œ์—ฐ๋ณ€์ด ์—ฐ์‚ฐ์„ ํ†ตํ•ด ์ „์—ญ ์ตœ์ ํ•ด(์ตœ์†Œ๊ฐ’)์„ ์ฐพ๋Š” ๋ฐ ์ ํ•ฉํ•˜๋‹ค. ํŠนํžˆ, Fig. 3๊ณผ ๊ฐ™์ด ๋น„์„ ํ˜• ๋ฌธ์ œ์—์„œ ๊ตญ์†Œ ์ตœ์†Œ๊ฐ’์— ๋น ์ง€์ง€ ์•Š๊ณ  ์ „์—ญ ์ตœ์†Œ๊ฐ’์„ ํƒ์ƒ‰ํ•  ์ˆ˜ ์žˆ์–ด ๋ณต์žกํ•œ ์ตœ์ ํ™” ๋ฌธ์ œ์— ํšจ๊ณผ์ ์ด๋‹ค. ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜์˜ ์ „์—ญ ์ตœ์†Œ๊ฐ’์„ ์ฐพ๊ธฐ ์œ„ํ•ด Fig. 1์— ๋‚˜ํƒ€๋‚œ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌ์„ฑ๋œ ์ ํ•ฉ๋„ ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ๊ฐ ์„ธ๋Œ€์—์„œ ์ ํ•ฉ๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ ํ•ฉ๋„๊ฐ€ ์ตœ์†Œ๊ฐ’์ด ๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ, ๊ต์ฐจ ์—ฐ์‚ฐ(Crossover Operation) ๋ฐ ๋Œ์—ฐ๋ณ€์ด ์—ฐ์‚ฐ(Mutation Operation)์„ ํ™œ์šฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ตœ์ ํ™”๋ฅผ ๋ฐ˜๋ณตํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์˜ ์ฃผ์š” ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ๋Š” ์„ธ๋Œ€ ์ˆ˜(100), ๋ถ€๋ชจ ๊ฐœ์ฒด ์ˆ˜(3), ์ž์† ๊ฐœ์ฒด ์ˆ˜(15) ๋“ฑ์ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ๋ฐ˜๋ณต ํšŸ์ˆ˜์™€ ํ•ด์ง‘๋‹จ์˜ ์ง„ํ™” ๊ณผ์ •์„ ๊ฒฐ์ •ํ•œ๋‹ค. ์ ํ•ฉ๋„ ํ•จ์ˆ˜๋Š” ์ „์—ญ ์ตœ์†Œ๊ฐ’(Global Minimum)๊ณผ ๊ตญ์†Œ ์ตœ์†Œ๊ฐ’(Local Minimum)์„ ํฌํ•จํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ตœ์ข…์ ์œผ๋กœ ์ „์—ญ ์ตœ์†Œ๊ฐ’์—์„œ ์ ํ•ฉ๋„๊ฐ€ ์ตœ์†Œํ™”๋œ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜(Optimal Wavelength Expansion Coefficient)๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ์ด๋Š” Fig. 3์—์„œ ๋ณด์—ฌ์ง€๋Š” ๋ฐ”์™€ ๊ฐ™์ด, ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ(R)๊ฐ€ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜(C)์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋Š” ํŒจํ„ด์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์ง€์—ญ ์ตœ์†Œ๊ฐ’(Local Minimum)์ด ์•„๋‹Œ ์ „์—ญ ์ตœ์†Œ๊ฐ’(Global Minimum)์„ ์ฐพ๋Š” ๊ฒƒ์ด ์ตœ์ ํ™” ๊ณผ์ •์˜ ๋ชฉํ‘œ์˜€๋‹ค. ์‹ (7)์€ ์ ํ•ฉ๋„ ํ•จ์ˆ˜์ธ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ(R)๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ C๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๊ฐœ๋…์„ โ€˜argminโ€™ ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์‹ (7)์—์„œ ์‹ (3), (5)์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ โ€˜๐‘Ÿโ€™์€ ์ฐจ๋ฅœ ๋ฐ˜๊ฒฝ(๋‹จ์œ„: m), โ€˜๐‘’โ€™๋Š” ์ขŒ์šฐ ์ฐจ๋ฅœ ๊ฐ„๊ฒฉ์˜ 1/2(๋‹จ์œ„: m), โ€˜๐œ† โ€™๋Š” ๋‹ต๋ฉด ๊ตฌ๋ฐฐ, โ€˜๐ถโ€™๋Š” ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜, โ€˜๐‘…๐ถโ€™๋Š” ๊ณก์„  ๋ฐ˜๊ฒฝ(๋‹จ์œ„: m), โ€˜๐‘‰โ€™๋Š” ์šดํ–‰์†๋„(๋‹จ์œ„: m/s)๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.

(7)
$ \underline{\dfrac{}{}}argminR_{C}=\alpha(2\pi\sqrt{\dfrac{er}{\lambda}}\sqrt{1+\dfrac{l^{2}}{e^{2}}}(1+C)-50\sqrt{\dfrac{R_{C}}{5700}})^{2}\\ +k\dfrac{V^{2}}{2\pi\sqrt{\dfrac{er}{\lambda}}\sqrt{1+\dfrac{l^{2}}{e^{2}}}(1+C)}+R_{\min} $

Fig. 3 Optimization Process of Wavelength Expansion Coefficient for Hunting Motion through Global Minimum Search

../../Resources/ksm/jksmi.2025.29.1.1/fig3.png

3. ๊ณ ์†์ฒ ๋„ ์‚ฌํ–‰๋™ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜ ์ตœ์ ํ™” ๊ฒฐ๊ณผ

Fig. 4๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜(C)๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๊ณผ์ •์—์„œ ๊ฐ ์„ธ๋Œ€์˜ ์ ํ•ฉ๋„(Fitness) ๋ณ€ํ™”๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ดˆ๊ธฐ ์„ธ๋Œ€์—์„œ ์ตœ๋Œ€ ์ ํ•ฉ๋„(Maximum Fitness) ๊ฐ’์€ 7.24141๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ด๋Š” ์ดˆ๊ธฐ ํ•ด๋“ค์ด ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๊ฐ€ ํฐ ํ•ด๋“ค๋กœ ์‹œ์ž‘ํ–ˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์„ธ๋Œ€๊ฐ€ ์ง„ํ–‰๋ ์ˆ˜๋ก ์ ํ•ฉ๋„๋Š” ๋น ๋ฅด๊ฒŒ ๊ฐ์†Œํ•˜๋ฉฐ, 10์„ธ๋Œ€์— ์ด๋ฅด๋Ÿฌ ์ตœ์†Œ ์ ํ•ฉ๋„(Minimum Fitness)๋Š” 1.13879๋กœ ์•ˆ์ •ํ™”๋˜์—ˆ๋‹ค. ์ดํ›„ 100์„ธ๋Œ€๊นŒ์ง€ ์ตœ์†Œ ์ ํ•ฉ๋„๋Š” ๊ฑฐ์˜ ๋ณ€๋™ ์—†์ด ์œ ์ง€๋˜์—ˆ๋‹ค. ํ‰๊ท  ์ ํ•ฉ๋„(Average Fitness)๋Š” 1.15์—์„œ 1.14์‚ฌ์ด๋กœ ์ˆ˜๋ ดํ•˜์˜€๊ณ , ์ดˆ๊ธฐ์—๋Š” ๋ณ€๋™ ํญ์ด ์ปธ์œผ๋‚˜ ์„ธ๋Œ€๊ฐ€ ๊ฑฐ๋“ญ๋ ์ˆ˜๋ก ๋ณ€๋™ ํญ์ด ์ค„์–ด๋“ค๋ฉฐ ํ‰๊ท  ์ ํ•ฉ๋„๊ฐ€ ์ ์ฐจ ํ•˜ํ–ฅ ์•ˆ์ •ํ™”๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์€ ๊ฐ ์„ธ๋Œ€์—์„œ ๊ต์ฐจ ์—ฐ์‚ฐ(Crossover)๊ณผ ๋Œ์—ฐ๋ณ€์ด ์—ฐ์‚ฐ(Mutation)์„ ํ†ตํ•ด ์ ํ•ฉ๋„๊ฐ€ ์ ์ง„์ ์œผ๋กœ ๊ฐœ์„ ๋˜์—ˆ์Œ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ’์ด ๊ฐ์†Œํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ ํ•ฉํ•œ ํ•ด๊ฐ€ ๋„์ถœ๋˜์—ˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ 100์„ธ๋Œ€์— ๋„๋‹ฌํ–ˆ์„ ๋•Œ ์ตœ์ ์˜ C ๊ฐ’์€ ์•ฝ 0.54์œผ๋กœ ๋„์ถœ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋•Œ์˜ ์ตœ์†Œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ’์€ 1.13879์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ํšจ์œจ์ ์œผ๋กœ ์ž‘๋™ํ•˜์—ฌ ์‚ฌ๊ณ  ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.

Fig. 4 Results of Fitness Variation by Generation in the Genetic Algorithm Optimization Process

../../Resources/ksm/jksmi.2025.29.1.1/fig4.png

Fig. 5๋Š” ์‚ฌํ–‰๋™์˜ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜ ๋ฐ ๊ณก์„ ๋ฐ˜๊ฒฝ์— ๋”ฐ๋ฅธ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ํ•จ์ˆ˜ ๊ฐ’์„ ๋‚˜ํƒ€๋‚ธ ๊ทธ๋ž˜ํ”„์ด๋ฉฐ, Fig. 5A๋Š” ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜์— ๋”ฐ๋ฅธ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ’๋งŒ์„ ํ‘œ์‹œํ•œ ๊ทธ๋ž˜ํ”„์ด๋‹ค. ์•ž์„  ๊ฒฐ๊ณผ์™€ ๊ฐ™์ด, ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜์ธ ๐ถ๊ฐ’์ด 0.54์ผ ๋•Œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ์˜ ์ „์—ญ ์ตœ์†Œ๊ฐ’์ธ 1.14๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Fig. 5B๋Š” ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜ ๋ฐ ๊ณก์„ ๋ฐ˜๊ฒฝ์— ๋”ฐ๋ฅธ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ’ ๋ถ„ํฌ๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ทธ๋ž˜ํ”„์ด๋‹ค. ๐ถ๊ฐ’์ด 0.54์ผ ๋•Œ ๊ณก์„ ๋ฐ˜๊ฒฝ์ธ ๐‘…๐ถ๊ฐ’์ด 4,700 m์—์„œ 10,000 m๊นŒ์ง€ ๋ถ„ํฌํ•จ์— ๋”ฐ๋ผ, ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ์˜ ์ตœ๋Œ€๊ฐ’์€ 11.71, ์ตœ์†Œ๊ฐ’์€ 1.14๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ’์˜ ๋ถ„ํฌ๋Š” 4์žฅ์—์„œ ์ตœ์ ํ™”๋œ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณก์„ ๋ฐ˜๊ฒฝ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ’ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ๊ฒฐ๊ณผ ๋ฒ”์œ„๋ฅผ ๋‚˜ํƒ€๋‚ด์–ด ์ค€๋‹ค.

Table 2๋Š” ์‚ฌํ–‰๋™ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜์— ๋”ฐ๋ฅธ ๊ฒฐ๊ณผ ๊ฐ’๋“ค์„ ์ •๋ฆฌํ•œ ๋‚ด์šฉ์ด๋ฉฐ, ์‚ฌํ–‰๋™ ํŒŒ์žฅ๊ณผ ์ด์— ๋”ฐ๋ฅธ ์ฃผํŒŒ์ˆ˜, ๋ฆฌ์Šคํฌ๋ฅผ ๋‚˜ํƒ€๋‚ด์–ด ์ค€๋‹ค. ๋˜ํ•œ, Fig. 6๋Š” ์‚ฌํ–‰๋™ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜(C)์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์‚ฌํ–‰๋™ ํŒŒ์žฅ(L)๊ณผ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ(R)์˜ ๊ด€๊ณ„๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„ํ•œ ๊ฒƒ์ด๋ฉฐ, ๊ฐ๊ฐ์˜ ๊ทธ๋ž˜ํ”„ Fig. 6A, B, C๋Š” ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ฅธ ์‚ฌํ–‰๋™ ํŒŒํ˜•(๋ณ€์œ„)๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ๋จผ์ €, Fig. 6A์—์„œ๋Š” ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜ C๊ฐ€ 0์ผ ๋•Œ, ํŒŒ์žฅ L์ด 32.43 m๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ด๋•Œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ’์€ 7.39์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ, C๊ฐ€ 0.5๋กœ ์ฆ๊ฐ€ํ•œ Fig. 6B์—์„œ๋Š” ํŒŒ์žฅ์ด 48.64 m๋กœ ํ™•์žฅ๋˜์—ˆ๊ณ , ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋Š” 1.18๋กœ ๊ฐ์†Œํ•˜๋Š” ์–‘์ƒ์„ ๋ณด์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ C๊ฐ€ 1๋กœ ํ™•์žฅํ•œ Fig. 6C์—์„œ๋Š” ํŒŒ์žฅ์ด 64.85 m๋กœ ๋”์šฑ ๊ธธ์–ด์กŒ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋Š” 5.52์œผ๋กœ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด์™€ ๋‹ฌ๋ฆฌ, Fig. 6D์—์„œ๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ตœ์ ํ™”๋œ C๊ฐ’์ธ 0.54๋ฅผ ์ ์šฉํ–ˆ์„ ๋•Œ, ํŒŒ์žฅ L์€ 50.07 m๋กœ ๋„์ถœ๋˜์—ˆ๊ณ , ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋Š” 1.14์œผ๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ตœ์ ํ™”๋œ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜๋ฉด, C = 0์ผ ๋•Œ๋ณด๋‹ค ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๊ฐ€ ์•ฝ 84.57% ๊ฐ์†Œํ•˜์˜€๊ณ , C = 0.5์ผ ๋•Œ๋ณด๋‹ค 3.39%, C = 1์ผ ๋•Œ๋ณด๋‹ค๋Š” 79.35% ๊ฐ์†Œํ•œ ์ˆ˜์น˜๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์ตœ์ ํ™”๋œ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๊ฐ€ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ž„์„ ์ฆ๋ช…ํ•˜๋ฉฐ, ์ ์ ˆํ•œ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜ ์„ ํƒ์ด ๊ณ ์†์ฒ ๋„์˜ ์•ˆ์ •์„ฑ์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค.

Fig. 5 Graph of risk function values according to wavelength expansion coefficient and curve radius

../../Resources/ksm/jksmi.2025.29.1.1/fig5.png

Fig. 6 Analysis of Waveform and Risk Variation According to Hunting Wavelength Expansion Coefficient (C)

../../Resources/ksm/jksmi.2025.29.1.1/fig6.png

Table 2 Result Table of Wavelength (L) and Risk (R) Based on Different Wavelength Expansion Coefficients (C)

Wavelength Expansion Coefficeint (C)

Operating Speed (km/h)

Wavelength (m)

Frequency (Hz)

Risk

C=0

300

32.43

2.57

7.39

C=0.5

300

48.64

1.72

1.18

C=1

300

64.85

1.28

5.52

C=0.54 (Optimized)

300

50.07

1.66

1.14

4. ์ตœ์ ํ™”๋œ ํ™•์žฅ๊ณ„์ˆ˜ ๊ธฐ๋ฐ˜ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๋ถ„์„

์ตœ์ ํ™”๋œ ์‚ฌํ–‰๋™ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜(C=0.54)์˜ ํšจ๊ณผ๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๊ณ  ์‹ฌ์ธต์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด, ํ™•์žฅ๊ณ„์ˆ˜ C ๊ฐ’์ด 0, 0.5, 1์ผ ๋•Œ์™€ ๋น„๊ตํ•˜์—ฌ ๊ฐ๊ฐ์˜ ํ™•์žฅ๊ณ„์ˆ˜์— ๋”ฐ๋ฅธ ํ‰๊ท  ๋ˆ„์  ๋ฆฌ์Šคํฌ(Average Cumulative Risk)๋ฅผ ์‚ฐ์ถœํ•˜๊ณ  ์ด๋ฅผ ๋น„๊ตํ•˜๋Š” ๊ณผ์ •์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์‹ (8)์€ ํ‰๊ท  ๋ˆ„์  ๋ฆฌ์Šคํฌ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๊ณผ์ •์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์‹ (8)์—์„œ ACR(๐‘–)๋Š” ๊ตฌ๊ฐ„ ๐‘–๊นŒ์ง€์˜ ํ‰๊ท  ๋ˆ„์  ๋ฆฌ์Šคํฌ, ๐‘์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฐœ์ˆ˜, Risk๐‘—(๐‘–)๋Š” ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๐‘—์—์„œ ๊ฐ ๊ตฌ๊ฐ„ ๐‘–์—์„œ ๋ˆ„์ ๋œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ’, ๐‘–๋Š” ์ด๋™ํ•œ ๊ตฌ๊ฐ„์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐ ํ™•์žฅ๊ณ„์ˆ˜์— ๋”ฐ๋ฅธ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๋ณ€๋™์„ฑ์„ ํŒŒ์•…ํ•˜๊ณ , ์ตœ์ ํ™”๋œ ๐ถ ๊ฐ’์ด ์‹ค์ œ๋กœ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์–ผ๋งˆ๋‚˜ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ์†Œ์‹œํ‚ค๋Š”์ง€ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์‚ฌํ–‰๋™ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜ ์‹œ๋‚˜๋ฆฌ์˜ค(C=0, 0.5, 1, ์ตœ์ ํ™”๋œ C=0.54)๋งˆ๋‹ค ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ 15๋ฒˆ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋ฐ˜๋ณต ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ๋ฐ˜๋ณต ๊ณผ์ •์„ ํ†ตํ•ด ํ™•์žฅ๊ณ„์ˆ˜์— ๋”ฐ๋ฅธ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ์˜ ๋ณ€๋™์„ฑ์„ ์‹œ๊ฐ์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋ž˜ํ”„์˜ x์ถ•์— ํ‘œ์‹œ๋œ 'Section (Count)'๋Š” ๊ณก์„  ๋ฐ˜๊ฒฝ(Rc)์˜ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์„ค์ •๋œ ๋‹จ์œ„ ๊ตฌ๊ฐ„์„ ์˜๋ฏธํ•œ๋‹ค. ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ๋Š” ํŠน์ • ๊ณก์„  ๋ฐ˜๊ฒฝ์—์„œ ๋ฆฌ์Šคํฌ๋ฅผ ํ‰๊ฐ€ํ•œ ํ›„, ๊ณก์„  ๋ฐ˜๊ฒฝ์ด ๋ณ€๊ฒฝ๋˜๋ฉด Count๊ฐ€ ์ฆ๊ฐ€ํ•˜์—ฌ ๋‹ค์Œ ๊ตฌ๊ฐ„์œผ๋กœ ์ด๋™ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋ฐ˜๋ณต์ด ์ง„ํ–‰๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณก์„  ๋ฐ˜๊ฒฝ์ด 4700 m์—์„œ 4800 m๋กœ ๋ณ€ํ•  ๋•Œ Count๊ฐ€ ์ƒ์Šนํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ๊ฐ ๊ตฌ๊ฐ„์—์„œ์˜ ๋ˆ„์  ๋ฆฌ์Šคํฌ๋ฅผ ๊ด€์ฐฐํ•˜๊ณ  ํ‰๊ท ๊ฐ’์„ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๊ณก์„  ๋ฐ˜๊ฒฝ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋ˆ„์  ๋ฆฌ์Šคํฌ์˜ ์ถ•์ ๊ณผ ํ‰๊ท ํ™”๋ฅผ ํ†ตํ•ด, ๋‹ค์–‘ํ•œ ์กฐ๊ฑด์—์„œ์˜ ์œ„ํ—˜์„ฑ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ํ‰๊ฐ€ํ• ์ˆ˜ ์žˆ๋‹ค. ๊ณก์„  ๋ฐ˜๊ฒฝ(๐‘…๐ถ) ๊ฐ’์€ 4,700 m์—์„œ 10,000 m ์‚ฌ์ด์˜ ๋žœ๋ค ๊ฐ’์œผ๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๊ณก๋ฅ  ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค(Fig. 7A, C, E, G). Fig. 7์˜ ๊ฐ ๊ทธ๋ž˜ํ”„๋Š” ๋‹ค์–‘ํ•œ ์‚ฌํ–‰๋™ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜(C=0, 0.5, 1, ์ตœ์ ํ™”๋œ C=0.54)์— ๋”ฐ๋ผ ๋ˆ„์  ๋ฆฌ์Šคํฌ์˜ ๋ณ€๋™์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ขŒ์ธก ๊ทธ๋ž˜ํ”„(Fig. 7A, C, E, G)๋Š” ๊ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์—์„œ ๊ตฌ๊ฐ„๋ณ„ ๋ˆ„์  ๋ฆฌ์Šคํฌ์˜ ์ˆ˜๋ ด ๊ณผ์ •์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์šฐ์ธก ๊ทธ๋ž˜ํ”„(Fig. 7B, D, F, H)๋Š” Section 300์—์„œ์˜ ํ‰๊ท  ๋ˆ„์  ๋ฆฌ์Šคํฌ ๊ฐ’์„ ๋น„๊ตํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ฐ ํ™•์žฅ๊ณ„์ˆ˜์— ๋”ฐ๋ฅธ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ์˜ ์ˆ˜๋ ด ์†๋„์™€ ๋ณ€๋™์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ํŠนํžˆ ์ตœ์ ํ™”๋œ C=0.54 ๊ฐ’์—์„œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋” ๋‚ฎ๊ณ  ์•ˆ์ •์ ์œผ๋กœ ์ˆ˜๋ ดํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค.

(8)
$ACR(i)=\dfrac{1}{N}\sum_{j=1}^{N}(\dfrac{1}{i}Risk_{j}(i))$

๊ณก์„  ๋ฐ˜๊ฒฝ(๐‘…๐ถ)์˜ ๋žœ๋ค ๊ฐ’ ์„ค์ •์—๋Š” ๋ฒ ํƒ€ ๋ถ„ํฌ๋ฅผ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ์‚ฐ์•… ์ง€ํ˜•์ด ๋งŽ์€ ํ•œ๊ตญ ์ฒ ๋„ ํ™˜๊ฒฝ์˜ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•จ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์šดํ–‰ ์กฐ๊ฑด์—์„œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ๋ณด๋‹ค ํ˜„์‹ค์ ์œผ๋กœ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ฒ ํƒ€ ๋ถ„ํฌ๋Š” ๋‘ ๋ชจ์–‘ ๋งค๊ฐœ๋ณ€์ˆ˜์— ๋”ฐ๋ผ ๊ฐ’์ด ํŠน์ • ๋ฒ”์œ„์—์„œ ์ง‘์ค‘๋˜๋Š” ์„ฑ์งˆ์„ ๊ฐ€์ง„๋‹ค. ์‹ (9)๋Š” ๋ฒ ํƒ€๋ถ„ํฌ๋ฅผ ์ •์˜ํ•œ ๊ฒƒ์ด๋ฉฐ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” โ€˜๐‘Ž=2, ๐‘=5โ€™๋กœ ์„ค์ •ํ•˜์—ฌ ๊ณก์„  ๋ฐ˜๊ฒฝ์ด ์‚ฐ์•…์ง€ํ˜•์— ๊ฐ€๊นŒ์šด 4700 m์— ์ƒ๋Œ€์ ์œผ๋กœ ๋งŽ์ด ๋ถ„ํฌ๋˜๋„๋ก ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ณก์„  ๋ฐ˜๊ฒฝ์„ 4700 m์—์„œ 10000 m ์‚ฌ์ด๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ, ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ๋ถ„์„ํ•  ๋•Œ ํ˜„์‹ค์ ์ธ ๊ณก๋ฅ  ๋ณ€ํ™”์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค.

(9)
$B(a,\: b)=\int_{0}^{1}t^{a-1}(1-t)^{b-1}dt$

Fig. 7B, D, F, H๋Š” ๊ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‚ฐ์ถœ๋œ ํ‰๊ท  ๋ˆ„์  ๋ฆฌ์Šคํฌ๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค. C=0์ผ ๋•Œ ํ‰๊ท  ๋ˆ„์ ๋ฆฌ์Šคํฌ๋Š” 300๋ฒˆ์งธ ๊ตฌ๊ฐ„์—์„œ 13.58๋กœ ๊ฐ€์žฅ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, C=0.5์ผ ๋•Œ๋Š” 2.85, C=1์ผ ๋•Œ๋Š” 2.63์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฐ˜๋ฉด, ์ตœ์ ํ™”๋œ C=0.54 ๊ฐ’์—์„œ๋Š” ํ‰๊ท  ๋ˆ„์  ๋ฆฌ์Šคํฌ๊ฐ€ 2.41๋กœ ๋„์ถœ๋˜์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด C=0์ผ ๋•Œ์™€ ๋น„๊ตํ•˜์—ฌ ์•ฝ 82.25% ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ, C=0.5์ผ ๋•Œ๋ณด๋‹ค 15.44%, C=1์ผ ๋•Œ์™€ ๋น„๊ตํ•ด์„œ๋Š” 8.36% ๊ฐ์†Œํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Š” ์ตœ์ ํ™”๋œ C ๊ฐ’์ด ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ค„์ด๋Š” ๋ฐ ๊ธฐ์—ฌํ•˜๋ฉฐ, ๊ธฐ์กด์˜ ํ™•์žฅ๊ณ„์ˆ˜๋“ค๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ์†Œ์— ์žˆ์–ด ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€์Œ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

Fig. 7 Analysis of Average Cumulative Risk Changes Based on the Hunting Motion Wavelength Expansion Coefficient

../../Resources/ksm/jksmi.2025.29.1.1/fig7.png

5. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ๊ณ ์†์ฒ ๋„์˜ ํšก ๋งˆ๋ชจ ๋ฐ ์‚ฌ๊ณ ๋ฅผ ์œ ๋ฐœํ•˜๋Š” ์‚ฌํ–‰๋™์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜(C) ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, C ๊ฐ’์— ๋”ฐ๋ผ ํŒŒ์žฅ(L)๊ณผ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ(R)๊ฐ€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋ฐฉ์‹์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๊ฐ€ 0์ผ ๋•Œ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋Š” 7.39๋กœ ๊ฐ€์žฅ ๋†’์•˜์œผ๋ฉฐ, ํŒŒ์žฅ์€ 32.43 m๋กœ ์งง๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. C ๊ฐ’์„ 1๋กœ ํ™•์žฅํ•˜๋ฉด ํŒŒ์žฅ์€ 64.85 m๋กœ ๊ธธ์–ด์ง€์ง€๋งŒ, ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋Š” 5.52์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚˜, ํŒŒ์žฅ ํ™•์žฅ์ด ์˜คํžˆ๋ ค ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ–ˆ๋‹ค. ์ตœ์ ํ™”๋œ C ๊ฐ’(0.54)์„ ์ ์šฉํ•œ ๊ฒฐ๊ณผ, ํŒŒ์žฅ์€ 50.07 m, ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋Š” 1.14๋กœ, C = 0์ผ ๋•Œ๋ณด๋‹ค ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๊ฐ€ ์•ฝ 84.57% ๊ฐ์†Œํ•˜์˜€๊ณ , C = 1์ผ ๋•Œ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ๋Š” ๋ฌด๋ ค 79.35%๊ฐ€ ๊ฐ์†Œํ•œ ์ˆ˜์น˜๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ์˜ ์ตœ์†Œํ™”๋ฅผ ์œ„ํ•œ ์ตœ์ ์˜ C ๊ฐ’์„ ์ฐพ๋Š” ๋ฐ ์ค‘์š”ํ•œ ์„ฑ๊ณผ๋กœ ํ‰๊ฐ€๋œ๋‹ค. ์ตœ์ ํ™”๋œ ์‚ฌํ–‰๋™ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ์‹ฌ์ธต์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด, ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ™œ์šฉํ•˜์—ฌ C=0, C=0.5, C=1๊ณผ ์ตœ์ ํ™”๋œ C=0.54์˜ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ์†Œ ํšจ๊ณผ๋ฅผ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, C=0์— ๋น„ํ•ด ํ‰๊ท  ๋ˆ„์  ๋ฆฌ์Šคํฌ๋Š” ์•ฝ 82.25%, C=0.5์— ๋น„ํ•ด 15.44%, C=1์— ๋น„ํ•ด 8.36% ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ด๋Š” ์ตœ์ ํ™”๋œ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๊ฐ€ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ๊ฐ์†Œ์— ๊ฐ€์žฅ ํšจ๊ณผ์ ์ž„์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํ•˜์ง€๋งŒ, ๋‹ค์–‘ํ•œ ๊ณก์„ ๋ฐ˜๊ฒฝ์„ ๋ฐ˜์˜ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์—์„œ ์ง์„ ์— ๊ฐ€๊นŒ์šด ๊ตฌ๊ฐ„์˜ ๋น„์ค‘์ด ์ผ๋ถ€ ๋ฆฌ์Šคํฌ ์™„ํ™”์— ๊ธฐ์—ฌํ•˜์—ฌ C=1๊ณผ ์ตœ์ ํ™”๋œ C=0.54 ๊ฐ„ ํ‰๊ท  ๋ˆ„์  ๋ฆฌ์Šคํฌ ์ฐจ์ด๊ฐ€ 8.36%๋กœ ์ƒ๋Œ€์ ์œผ๋กœ ์ž‘๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณก์„  ๊ตฌ๊ฐ„ ๋น„์œจ์„ ํ˜„์‹ค์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜์—ฌ ๋ฆฌ์Šคํฌ ๋ณ€๋™์„ฑ์„ ๋ณด๋‹ค ์ •๋ฐ€ํ•˜๊ฒŒ ํ‰๊ฐ€ํ•  ์˜ˆ์ •์ด๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋“ค์€ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ๊ณผ๋„ํ•˜๊ฒŒ ๋Š˜๋ฆฌ๋Š” ๊ฒƒ์ด ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์˜คํžˆ๋ ค ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์ด ๋‹จ์ˆœํžˆ ์‚ฌํ–‰๋™ ์–ต์ œ์—๋งŒ ์ค‘์ ์„ ๋‘์—ˆ๋˜ ๊ฒƒ๊ณผ๋Š” ๋‹ค๋ฅธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ตœ์ ํ™”๋œ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ๋ฅผ ์ค„์ด๋Š” ๋ฐ ํšจ๊ณผ์ ์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹จ์ˆœํžˆ ์‚ฌํ–‰๋™์„ ์–ต์ œํ•˜๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ , ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ ์ตœ์†Œํ™”์™€ ๋ ˆ์ผ ํšก ๋งˆ๋ชจ ์–ต์ œ๋ฅผ ๋™์‹œ์— ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•จ์œผ๋กœ์จ ๊ณ ์†์ฒ ๋„ ์œ ์ง€๊ด€๋ฆฌ์™€ ์•ˆ์ „์„ฑ ๊ฐ•ํ™”์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ์‹ค์šฉ์  ๋ฐฉ๋ฒ•๋ก ์„ ์ œ๊ณตํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ํŠนํžˆ, ์ตœ์ ํ™”๋œ ํ™•์žฅ๊ณ„์ˆ˜์˜ ์ ์šฉ์ด ์‚ฌํ–‰๋™ ํŒŒ์žฅ์„ ์•ˆ์ „ ๋ฒ”์œ„ ๋‚ด์—์„œ ํ™•์žฅํ•˜์—ฌ ๋ ˆ์ผ ์ˆ˜๋ช…์„ ๋Š˜๋ฆด๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜๋ฉฐ, ์‚ฌ๊ณ  ์˜ˆ๋ฐฉ์— ํšจ๊ณผ์ ์ž„์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•˜์˜€๊ธฐ์— ํ–ฅํ›„ ๊ณ ์†์ฒ ๋„ ์‹œ์Šคํ…œ์—์„œ ์ค‘์š”ํ•˜๊ฒŒ ํ™œ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๋ถ„์„๋œ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ณ ์†์ฒ ๋„ ์ฐจ๋Ÿ‰๊ณผ ํ™˜๊ฒฝ ์กฐ๊ฑด์— ๋งž์ถ”์–ด ์„ค๊ณ„๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์—, ๋‹ค๋ฅธ ์ข…๋ฅ˜์ธ ์ผ๋ฐ˜, ๋„์‹œ์ฒ ๋„ ์ฐจ๋Ÿ‰์ด๋‚˜ ๋” ๋‹ค์–‘ํ•œ ์ฃผํ–‰ ์กฐ๊ฑด์—์„œ๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ, ์‹ค์ œ ์šดํ–‰ ํ™˜๊ฒฝ์—์„œ ๋ณ€ํ™”ํ•˜๋Š” ๋™์  ์š”์†Œ๋“ค์„ ๊ณ ๋ คํ•œ ์‹ค์‹œ๊ฐ„ ์ตœ์ ํ™” ์‹œ์Šคํ…œ์˜ ์ ์šฉ์ด ๋ถ€์กฑํ•˜๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋˜ํ•œ, ์‹ค์ œ ๊ณ ์†์ฒ ๋„ ๊ตฌ๊ฐ„ ๋‚ด์—์„œ์˜ ๊ธ‰๊ณก์„  ๊ตฌ๊ฐ„์˜ ํ†ต๊ณ„๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ๋ฆฌ์Šคํฌ ๋ถ„์„์ด ์œ ํšจํ•œ์ง€ ๊ฒ€์ฆํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์  ๋ณ€์ˆ˜์™€ ๊ธ‰๊ณก์„  ๊ตฌ๊ฐ„ ํ†ต๊ณ„, ์ฐจ๋Ÿ‰ ํŠน์„ฑ์„ ๊ณ ๋ คํ•œ ์ถ”๊ฐ€์ ์ธ ์—ฐ๊ตฌ์™€ ํ•จ๊ป˜ ์‹คํ—˜์  ๊ฒ€์ฆ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋” ๊ด‘๋ฒ”์œ„ํ•œ ๊ณ ์†์ฒ ๋„ ์šดํ–‰ ์ƒํ™ฉ์—์„œ๋„ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์ตœ์ ํ™” ๋ฐฉ์•ˆ์„ ๋ชจ์ƒ‰ํ•˜๊ณ , ๊ฒฐ๊ณผ์˜ ์‹ ๋ขฐ์„ฑ์„ ํ•œ์ธต ๋†’์ผ ํ•„์š”๊ฐ€ ์žˆ๋‹ค๊ณ  ๋ถ„์„๋œ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋ณธ ์—ฐ๊ตฌ๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ์‚ฌ๊ณ  ๋ฆฌ์Šคํฌ์™€ ์‚ฌํ–‰๋™ ํŒŒ์žฅ ํ™•์žฅ๊ณ„์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๊ณ ์†์ฒ ๋„ ์šดํ–‰์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ ˆ์ผ ํšก ๋งˆ๋ชจ์™€ ์‚ฌ๊ณ ๋ฅผ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ดˆ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๋‹ค๊ณ  ์‚ฌ๋ฃŒ๋œ๋‹ค.

๊ฐ์‚ฌ์˜ ๊ธ€

๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตญํ† ๊ตํ†ต๋ถ€ ์ง€์›(RS-2020-KA-159279)์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ์ด์— ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

References

1 
Choi, J.-H., Jang, S.-Y., You, S.-W., Kim, D.-Y., and Kim, H.-J. (2024), Evaluation of Maintenance Quantity and Life Cycle Costs of Railway Track Considering Evolution of Rail Fatigue Damage and Ballast Settlement According to Track Quality Level, Journal of the Korea Institute for Structural Maintenance and Inspection, 28(4), 37-47 (in Korean).DOI
2 
Wikipedia contributors (2024a), KTX-Sancheon, Wikipedia. Retrieved on 09.21 from https://ko.wikipedia.org/w/index.php? title=KTX-%EC%82%B0%EC%B2%9C&oldid=37881946URL
3 
Wikipedia contributors (2024b), KTX (Train), Wikipedia. Retrieved on 09.21 from https://ko.wikipedia.org/w/index.php? title=KTX_(%EC%B0%A8%EB%9F%89)&oldid=37841701URL
4 
Ministry of Land, Infrastructure and Transport (2022), Regulations on Railroad Construction Standards, Retrieved from https://www.law.go.kr/%ED%96%89%EC%A0%95%EA%B7%9C%EC%B9%99/%EC%B2%A0%EB%8F%84%EC%9D%98%20%EA%B1%B4%EC%84%A4%EA%B8%B0%EC%A4%80%EC%97%90%20%EA%B4%80%ED%95%9C%20%EA%B7%9C%EC%A0%95URL
5 
Ministry of Land, Infrastructure and Transport (2024a), Technical Standards for Railway Products, Retrieved from https://www.law.go.kr/ LSW/admRulLsInfoP.do?admRulSeq=2100000238044URL
6 
Ministry of Land, Infrastructure and Transport (2024b), Technical Standards for Railway Vehicle, Retrieved from https://www.law.go. kr/LSW/admRulLsInfoP.do?admRulId=2077405&efYd=0URL
7 
Eom, B.-G., Kang, B.-B., and Lee, H.-S. (2012), A Running Stability Test of 1/5 Scaled Bogie using Small-Scaled Derailment Simulator, Journal of the Korean Society for Railway, 15(1), 9-16 (in Korean).DOI
8 
Garg, V. (2012), Dynamics of railway vehicle systems. Elsevier.URL
9 
Iwnicki, S. (2006), Handbook of railway vehicle dynamics. CRC press.URL
10 
Jeong, C.-H., Cho, K.-H., and Shin, J.-R. (2023), Dynamic Responses of Steel-Arch Railway Bridge due to Snake Motion of Urban Railway Vehicles. Journal of the Korea Academia Industrial Cooperation Society, 24(8), 436-444 (in Korean).URL
11 
Kaiser, I., Poll, G., Voss, G., and Vinolas, J. (2019), The impact of structural flexibilities of wheelsets and rails on the hunting behaviour of a railway vehicle, Vehicle System Dynamics, 57(4), 564-594.DOI
12 
Kritikakos, K., Fassois, S. D., and Sakellariou, J. S. (2024), On the problem of on-board risk assessment for railway hunting: An exploratory study. IFAC-PapersOnLine, 58(4), 144-149.DOI
13 
Lee, S. I., and Choi, Y. S. (2003), Analysis on the snake motion of one freight car for high speed running. Journal of Korean Society for Railway, 6(3), 149-155 (in Korean).URL
14 
Liang, J., Sun, J., Jiang, Y., Pan, W., and Jiao, W. (2024), Advances and Challenges in the Hunting Instability Diagnosis of High-Speed Trains, Sensors, 24(17), 5719.DOI
15 
Ning, J., Hong, Z., Ning, Y., Wen, S., Zhao, J., and Chen, C. (2023), Detection of Small-Amplitude Hunting Motion in High-Speed Trains Under Extreme Data Imbalance, International conference on the Efficiency and Performance Engineering Network.DOI
16 
Oh, S.-T., and Lee, D.-J. (2014), A Dynamic Analysis of Rotations at the Center of Vehicle Running High Speed KTX Train on the PSC Box Bridges, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(1), 59-67 (in Korean).DOI
17 
Wang, X., Liu, B., Di Gialleonardo, E., Kovacic, I., and Bruni, S. (2022), Application of semi-active yaw dampers for the improvement of the stability of high-speed rail vehicles: mathematical models and numerical simulation, Vehicle System Dynamics, 60(8), 2608-2635.DOI
18 
Yan, Y., Zeng, J., Huang, C., and Zhang, T. (2019), Bifurcation analysis of railway bogie with yaw damper. Archive of Applied Mechanics, 89, 1185-1199.DOI
19 
Yoon, B.-H., Kim, M.-C., Bae, Y.-H., and Park, Y.-G. (2020), Study on the Optimization of Gauge Expansion for Improvement of Running Performance of High-speed Railway Turnouts, Journal of the Korean Society for Railway, 23(12), 1196-1205 (in Korean).DOI
20 
Zeng, X.-H., Lai, J., and Wu, H. (2018), Hunting stability of high-speed railway vehicles under steady aerodynamic loads, International Journal of Structural Stability and Dynamics, 18(07), 1850093.DOI