Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Sohn, H., Farrar, R., Hemez, H., Czarnecki, J. (2002), A Review of Structural Health Monitoring Literature: 1996-2001, Los Alamos National LaboratoryGoogle Search
2 
Wong, K.Y. (2004), Instrumentation and Health Monitoring of Cable-supported Bridge, 11, 91-124.DOI
3 
Jang, S., Jo, H., Mechitov, K., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer, Jr., , B.F., Agha, G. (2010), Structural Health Monitoring of a Cable-stayed Bridge using Smart Sensor Technology: Deployment and Evaluation(6), 439-459.Google Search
4 
Na, W.S., Baek, J. (2017), Impedance-Based Non-Destructive Testing Method Combined with Unmanned Aerial ehicle for Structural Health Monitoring of Civil Infrastructures, 17, 15DOI
5 
Lee, Y.-J., Cho, S. (2016), SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating, 16DOI
6 
Abe, M., Fujino, Y. (2009), Bridge Monitoring in Japan, Encyclopedia of Structural Health Monitoring, 5DOI
7 
Koh, H.M., Lee, H.S., Kim, S., Choo, J.F. (2009), Monitoring of Bridge in Korea, Encyclopedia of Structural Health Monitoring, 5Google Search
8 
Baptista, F.G., Budoya, D.E., Almeida, V.A.D., Ulson, J.A.C. (2014), An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-Based Structural Health Monitoring, 14DOI
9 
Salmanpour, M.S., Khodaei, Z.S., Aliabadi, M.H. (2017), Impact Damage Localisation with Piezoelectric Sensors under Operational and Environmental Conditions, 17, 1178DOI
10 
Lamonaca, F., Sciammarella, P.F., Scuro, C., Carni, D.L., Olivito, R.S. (2018), Synchronization of IoT Layers for Structural Health Monitoring, 8428329, 89-94.DOI
11 
Scuro, C., Sciammarella, P.F., Lamonaca, F., Olivito, R.S., Carni, D.L. (2018), IoT for structural health monitoring, 21, 4-9 and 14.DOI
12 
Aktan, A.E., Catbas, F.N., Grimmelsman, K.A., Pervizpour, M. (2003), Development of a Model Health Monitoring Guide for Major BridgesGoogle Search
13 
Peeters, B., Couvreur, G., Razinkov, O., Kundig, C. (2003), Continuous Monitoring of the Oresund Bridge: System and Data Analysis, In Proceedings of IMAC 21, International Modal Analysis Conference, Kissimmee, Florida, USADOI
14 
Ko, J.M., Ni, Y.Q. (2005), Technology Developments in Structural Health Monitoring of Large-scale Bridges, 27, 1715-1725.DOI
15 
Ko, J.M., Ni, Y.Q. (2003), Structural Health Monitoring and Intelligent Vibration Control of Cable-Supported Bridge: Research and Application, 7, 701-716.DOI
16 
Carnì, D.L., Scuro, C., Lamonaca, F., Olivito, R.S., Grimaldi, D. (2017), Damage analysis of concrete structures by means of acoustic emissions technique, 115, 79-86.DOI
17 
Lamonaca, F., Carrozzini, A., Grimaldi, D., Olivito, R.S. (2015), Improved monitoring of acoustic emissions in concrete structures by multi-triggering and adaptive acquisition time interval, 59, 227-236.DOI
18 
Lamonaca, F., Carrozzini, A., Grimaldi, D., Olivito, R.S. (2014), Improved accuracy of damage index evaluation in concrete structures by simultaneous hardware triggering, 21, 341-350.DOI
19 
Heo, G., Jeon, J. (2009), A Smart Monitoring System Based on Ubiquitous Computing Technique for Infra-structural System: Centering on Identification of Dynamic Characteristics of Self-Anchored Suspension Bridge, 13, 333-337.DOI
20 
Lynch, P.J. (2007), An Overview of Wireless Structural Health Monitoring for Civil Structures, 365, 345-372.DOI
21 
Zhang, J., Tian, G.Y., Marindra, A.M.J., Sunny, A.I., Zhao, A.B. (2017), A Review of Passive FRID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications, 17DOI
22 
Park, J.-W., Sim, S.-H., Jung, H.-J., Spencer, B.F. (2013), Development of a Wireless Displacement Measurement System Using Acceleration Responses, 13, 8377-8392.DOI
23 
Hao, J., Zhang, B., Jiao, Z., Mao, S. (2015), Adaptive compressive sensing based sample scheduling mechanism for wireless sensor networks, 22, 113-125.DOI
24 
Huang, Y., Beck, J.L., Wu, S., Li, H. (2016), Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery, s, 46, 62-79.DOI
25 
Peckens, C.A., Lynch, J.P. (2013), Utilizing the Cochlea as a Bio-inspired Compressive Sensing Technique, 22Google Search
26 
Peckens, C.A., Lynch, J.P., Heo, G. (2015), Resource-efficient Wireless Sensor Network Architecture Based on Bio-mimicry of the Mammalian auditory System, 26, 79-100.DOI
27 
Heo, G., Jeon, J. (2017), A Study on the Data Compression Technology-based Intelligent Data Acquisition (IDAQ), System for Structural Health Monitoring of Civil Structures(17)DOI
28 
Angrisani, L., Schiano Lo Moriello, R., Bonavolonta, F., Gallucci, L., Menna, C., Asprone, D., Fabbrocino, F. (2017), An innovative embedded wireless sensor network system for the structural health monitoring of RC structures, 8065969DOI
29 
Gallucci, L., Menna, C., Angrisani, L., Asprone, D., Lo Moriello, R.S., Bonavolontá, F., Fabbrocino, F. (2017), An embedded wireless sensor network with wireless power transmission capability for the structural health monitoring of reinforced concrete structures, 17, 2566DOI