Mobile QR Code QR CODE

REFERENCES

1 
Christopher & Dana Reeve Foundation , 2013, Stats about paralysis, https://www.christopherreeve.org/living-with-paralysis/statsabout-paralysisGoogle Search
2 
Hochberg L. R., Serruya M. D., Friehs G. M., Mukand J. A., Saleh M., Caplan A. H., Branner A., Chen D., Penn R. D., Donoghue J. P., Jul. 2006, Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature, Vol. 442, pp. 164-171DOI
3 
Hochberg L. R., Bacher D., Jarosiewicz B., Masse N. Y., Simeral J. D., Vogel J., Haddadin S., Liu J., Cash S. S., Smagt P. V. D., Donoghue J. P., May 2012, Reach and grasp by people with tetraplegia using a neurally controlled robotic arm, Nature, Vol. 485, pp. 372-375DOI
4 
Bouton C. E., Shaikhouni A., Annetta N. V., Bockbrader M. A., Friedenberg D. A., Nielson D. M., Sharma G., Sederberg P. B., Glenn B. C., Mysiw W. J., Morgan A. G., Deogaonkar M., Rezai A. R., May 2016, Restoring cortical control of functional movement in a human with quadriplegia, Nature, Vol. 533, pp. 247-250DOI
5 
Guggenmos D. J., Azin M., Barbay S., Mahnken J. D., Dunham C., Mohseni P., Nudo R. J., Dec. 2013, Restoration of function after brain damage using a neural prosthesis, Proceedings of the National Academy of Sciences of the U. S. A. (PANS), Vol. 110, No. 52, pp. 21177-21182DOI
6 
Seese T. M., Harasaki H., Saidel G. M., Davies C. R., 1998, Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating, Lab. Invest., Vol. 78, No. 12, pp. 1553-1562Google Search
7 
Harrison R. R., Charles C., Jun. 2003, A low-power lownoise CMOS amplifier for neural recording applications, IEEE Journal of Solid-State Circuits, Vol. 38, No. 6, pp. 958-965DOI
8 
Huhta J. C., Webster J. G., Mar. 1973, 60-Hz interference in electrocardiography, IEEE Transactions on Biomedical Engineering, Vol. BME-20, No. 2, pp. 91-101DOI
9 
Lee S., George A. K., Lee T., Chu J. U., Han S., Kim J. H., Je M., Lee J., Feb. 2018, A 110dB-CMRR 100dB-PSRR multi-channel neural-recording amplifier system using differentially regulated rejection ratio enhancement in 0.18mm CMOS, in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 472-473DOI
10 
Ng K. A., Xu Y. P., Oct. 2013, A compact, low input capacitance neural recording amplifier, IEEE Transactions on Biomedical Circuits and Systems, Vol. 7, No. 5, pp. 610-620DOI
11 
Han D., Zheng Y., Rajkumar R., Dawe G. S., Je M., Dec. 2013, A 0.45 V 100-channel neural-recording IC with sub-$\mu$W/channel consumption in 0.18 $\mu$m CMOS, IEEE Transactions on Biomedical Circuits and Systems, Vol. 7, No. 6, pp. 735-746DOI
12 
Ha S., Kim C., Chi Y. M., Akinin A., Maier C., Ueno A., Cauwenberghs G., May 2014, Integrated circuits and electrode interfaces for noninvasive physiological monitoring, IEEE Transactions on Biomedical Engineering, Vol. 61, No. 5, pp. 1522-1537DOI
13 
Park S. Y., Cho J., Lee K., Yoon E., Apr. 2018, Dynamic power reduction in scalable neural recording interface using spatiotemporal correlation and temporal sparsity of neural signals, IEEE Journal of Solid-State Circuits, Vol. 53, No. 4, pp. 1102-1114DOI
14 
Zou X., Liu L., Cheong J. H., Yao L., Li P., Cheng M. Y., Goh W. L., Rajkumar R., Dawe G. S., Cheng K. W., Je M., Oct. 2013, A 100-channel 1-mW implantable neural recording IC, IEEE Transactions on Circuits and Systems–I: Regular Papers, Vol. 60, No. 10, pp. 2584-2596DOI
15 
Liu L., Zou X., Goh W. L., Ramamoorthy R., Dawe G., Je M., Apr. 2012, 800 nW 43 nV/√Hz neural recording amplifier with enhanced noise efficiency factor, Electronics Letters, Vol. 48, No. 9, pp. 479-480DOI
16 
Kim S. J., Liu L., Yao L., Goh W. L., Gao Y., Je M., Nov. 2014, A 0.5-V sub-$\mu$W/channel neural recording IC with delta-modulation-based spike detection, in Proc. IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 189-192DOI
17 
Lee T., Jang D., Jung Y., Jeon H., Hong S., Han S., Chu J. U., Lee J., Je M., Oct. 2017, A neural recording amplifier based on adaptive SNR optimization technique for long-term implantation, in Proc. IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1-4DOI
18 
Lopez C. M., Prodanov D., Braeken D., Gligorijevic I., Eberle W., Bartic C., Puers R., Gielen G., Apr. 2012, A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability, IEEE Transactions on Biomedical Circuits and Systems, Vol. 6, No. 2, pp. 101-110DOI
19 
Lopez C. M., Andrei A., Mitra S., Welkenhuysen M., Eberle W., Bartic C., Puers R., Yazicioglu R. F., Gielen G. G. E., Jan. 2014, An implantable 455-active-electrode 52-channel CMOS neural probe, IEEE Journal of Solid-State Circuits, Vol. 49, No. 1, pp. 248-261DOI
20 
Steyaert M. S. J., Sansen W. M. C., Zhongyuan C., Dec. 1987, A micropower low-noise monolithic instrumentation amplifier for medical purposes, IEEE Journal of Solid-State Circuits, Vol. SC-22, No. 6, pp. 1163-1168DOI
21 
Muller R., Gambini S., Rabaey J. M., Jan. 2012, A 0.013 mm2, 5 $\mu$W, DC-coupled neural signal acquisition IC with 0.5 V supply, IEEE Journal of Solid-State Circuits, Vol. 47, No. 1, pp. 232-243DOI