Mobile QR Code QR CODE

REFERENCES

1 
Ando T., Fowler A. B., Stern F., 1982, Electronic properties of two-dimensional systems, Rev. Mod. Phys., Vol. 54, No. 2, pp. 437-672DOI
2 
Huang J. Z., Chew W. C., Tang M., Jiang L., 2012, Efficient simulation and analysis of quantum ballistic transport in nanodevices with AWE, IEEE Trans. Electron Devices, Vol. 59, No. 2, pp. 932-938DOI
3 
Karim M. A., Haque A., 2010, A physically based accurate model for quantum mechanical correction to the surface potential of nanoscale MOSFETs, IEEE Trans. Electron Devices, Vol. 57, No. 2, pp. 496-502DOI
4 
Zhang X., White M. H., 2012, A quantum mechanical treatment of low frequency noise in high-K NMOS transistors with ultra-thin gate dielectrics, Solid-State Electron, Vol. 78, No. 12, pp. 131-135DOI
5 
Moglestue C., 1986, Self-consistent calculation of electron and ole inversion charges at silicon-silicon dioxide interfaces, J. Appl. Phys., Vol. 59, No. 9, pp. 3175-3183DOI
6 
van Dort M. J., Woerlee P. H., Walker A. J., 1994, A simple model for quantization effects in heavily-doped silicon MOSFETs at inversion conductions, Solid-State Electron, Vol. 37, No. 3, pp. 411-414DOI
7 
Liu W., Jin X., King Y., Hu C., 1999, An efficient and accurate compact model for thin-oxide-MOSFET intrinsic capacitance considering the finite charge layer thickness, IEEE Trans. Electron Devices, Vol. 46, No. 5, pp. 1070-1072DOI
8 
Larcher L., et al , 2001, A new model of gate capacitance as a simple tool to extract MOS parameters, IEEE Trans. Electron Devices, Vol. 48, No. 5, pp. 935-945DOI
9 
Nakajima Y., et al , 1998, Physical origin and characteristics of gate capacitance in silicon metaloxide-semiconductor field-effect transistors, J. Appl. Phys., Vol. 83, No. 9, pp. 4788-4796DOI
10 
Janik T., Majkusiak B., 1994, Influence of carrier energy quantization on threshold voltage of metaloxide-semiconductor transistor, J. Appl. Phys., Vol. 75, No. 10, pp. 5186-5190DOI
11 
Ma Y., Li Z., Liu L., Tian L., Yu Z., 2000, Effective density-of-states approach to QM correction in MOS structure, Solid-State Electron, Vol. 33, No. 3, pp. 401-407DOI
12 
Clerc R., et al , 2001, A physical compact model for direct tunneling from nMOS inversion layers, Solid-State Electron, Vol. 45, No. 10, pp. 1705-1716DOI
13 
Yang N., Henson W. K., Hauser J. R., Wortman J. J., 1999, Modeling study of ultrathin gate oxides using direct tunneling current and capacitancevoltage measurements in MOS devices, IEEE Trans. Electron Devices, Vol. 46, No. 7, pp. 1464-1471DOI
14 
Ip B. K., Brews J. R., 1998, Quantum effects upon drain current in a biased MOSFET, IEEE Trans. Electron Devices, Vol. 45, No. 10, pp. 2213-2221DOI
15 
Celik-Butler Z., Wang F., 2000, Effects of quantization on random telegraph signals observed in deep-sub micron MOSFETs, Microelectronics Reliability, Vol. 40, pp. 1823-1831DOI
16 
Lukyanchikova N. B., et al , 2000, Influence of the substrate voltage on the random telegraph signal parameters in submicron n-channel metal-oxidesemiconductor field-effect transistors under a constant inversion charge density, Appl. Phys. A, Vol. 70, pp. 345-353DOI
17 
Pacelli A., et al , 1999, Quantum effects on the extraction of MOS oxide traps by 1/f noise measurements, IEEE Trans. Electron Devices, Vol. 46, No. 5, pp. 1029-1035DOI
18 
Palma A., et al , 1997, Quantum two-dimensional calculation of time constants of random telegraph signals in metal-oxide-semiconductor structure, Phys. Rev. B, Vol. 56, No. 15, pp. 9565-9594DOI
19 
Siergiej R. R., White M. M., Saks N. S., 1992, Theory and measurement of quantization effects in Si-SiO2 interface trap modeling, Solid-State Electron, Vol. 35, No. 6, pp. 843-854DOI
20 
Hareland S. A., et al , 1996, A computationally efficient model for inversion layer quantization effects in deep sub-micron n-channel MOSFET’s, IEEE Trans. Electron Devices, Vol. 43, No. 1, pp. 90-96DOI
21 
Lopez-Villanueva J. A., 1997, Effects of the inversion layer centroid on MOSFET behavior, IEEE Trans. Electron Devices, Vol. 44, No. 11, pp. 1915-1922DOI
22 
Ma Y., et al , 2001, Analytical charge-control and I-V model for sub-micrometer and deep-submicrometer MOSFETs fully comprising quantum mechanical effects, IEEE Trans. Computer-Aided Design, Vol. 20, No. 4, pp. 495-502DOI
23 
Lee J. H., Bosman G., Green K. R., Ladwig D., 2002, Model and analysis of gate leakage current in ultrathin nitride oxide MOSFETs, IEEE Trans. Electron Devices, Vol. 49, No. 7, pp. 1232-1241DOI
24 
Lee J. H., Bosman G., Green K. R., Ladwig D., 2003, Noise model of gate leakage current in ultrathin oxide MOSFETs, IEEE Trans. Electron Devices, Vol. 50, No. 12, pp. 2499-2506DOI
25 
Masson P., et al , 1998, Influence of quadratic mobility degradation factor on low frequency noise in MOS transistors, Electronics Letters, Vol. 34, No. 20, pp. 1977-1979DOI
26 
Chow H. C., Feng W. S., 2003, An improved analytical model for short-channel MOSFETs, IEEE Trans. Electron Devices, Vol. 39, No. 11, pp. 2626-2629DOI
27 
Lee J. H., Bosman G., 2004, 1/fγ drain current noise model in ultrathin oxide MOSFETs, Fluctuation and Noise Letters, Vol. 4, No. 2, pp. L297-L307DOI
28 
Jayaraman R., Sodini C. G., 1989, A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon, IEEE Trans. Electron Devices, Vol. 36, No. 9, pp. 1773-1782DOI
29 
Vandamme E. P., Vandamme L. K. J., 2000, Critical discussion on unified 1/f noise models for MOSFETs, IEEE Trans. Electron Devices, Vol. 47, No. 11, pp. 2146-2152DOI
30 
Wang B., Hellums J. R., Sodini C. G., 1994, MOSFET thermal noise modeling of analog integrated circuits, IEEE J. Solid-State Circuits, Vol. 29, No. 7, pp. 833-835DOI
31 
Gaioni L., et al , Sep 2008, Instrumentation of gate current noise measurements on sub-100nm MOS transistors, Topical Workshop on Electronics for Particle Physics, pp. 436-440DOI
32 
Simoen E., Mercha A., 2004, Experiemntal assessment of quantum effects in the low-frequency noise and RTS of deep submicron MOSFETs, in Advanced Experimental Methods for Noise Research in Nanoscale Electronic Devices. Kluwer Academic Publisher, pp. 121-128DOI
33 
Campbell J. P., et al , May 2009, Large random telegraph noise in sub-threshold operation of nano-scale nMOSFETs, in Proc. IEEE Int. Conf. on IC Design and Technol, pp. 17-20DOI
34 
Matsumoto S., et al , 2005, 1/f - noise characteristics in 100nm-MOSFETs and its modeling for circuit simulation, IEICE Trans. Electron, Vol. E88-C, No. 2, pp. 247-254DOI
35 
Ong S. N., et al , 2009, A new unified model for channel thermal noise of deep sub-micron RFCMOS, IEEE Int. Symp. On Radio-Frequency Integration Technology, Singapore, pp. 280-283DOI
36 
Chen J., Higashi Y., Hirano I., Mitani Y., Jun. 2013, Experimental study of channel doping concentration impacts on random telegraph signal noise and successful noise suppression by strain induced mobility enjancement, Proc. Symp. VLSI Technol.(VLSIT), pp. T184-T185Google Search
37 
Abe K., et al , 2010, Experimental investigation of effect of channel doping concentration on random telegraph signal noise, Jpn. J. Appl. Phys., Vol. 49, No. 4S, pp. 04DC07-1DOI
38 
Panda S., et al , 2013, Comparative study of thermal noise of Si surrounding gate MOSFET (SGMOSFET) with different gate oxides, Int. J. Semi. Sci. & Technol.(IJSST), Vol. 3, No. 2, pp. 17-22Google Search