Mobile QR Code QR CODE

REFERENCES

1 
Amann M. C., Jan 2001, Laser ranging: A critical review of usual techniques for distance measurement, Opt. Eng., Vol. 40, No. 1, pp. 10-19Google Search
2 
Johnson R., Jun 1967, Amilitarized airborne laser LADAR System, IEEE J. Quantum Electron., Vol. 3, No. 6, pp. 232-232Google Search
3 
James A. R., Sep 1997, Aided and automatic target recognition based uponsensory inputs from image forming systems, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 19, No. 9, pp. 1004-1019DOI
4 
Wang C., July 2009, Integrating LIDAR intensity and elevation data for terrain characterization in a forested area, IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 3, pp. 463-466DOI
5 
Zheng H., May 2017, Design of Linear Dynamic Range and High Sensitivity Matrix Quadrant APDs ROIC for Sensitive Detector Application, Microelec-tronics Journal, Vol. 63, pp. 49-57DOI
6 
Ruotsalainen T., Aug 2001, A wide dynamic range receiver channel for a pulsed time-of-flight laser radar, IEEE J. Solid-State Circuits, Vol. 36, No. 8, pp. 1228-1238DOI
7 
Pehkonen J., Mar 2006, Receiver channel with resonance-based timing detection for a laser range finder, IEEE Trans. Circuits Syst. I, Reg., Vol. 53, No. 3, pp. 569-577DOI
8 
Caspi D., May 1998, Range imaging with adaptive color structured light, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 5, pp. 470-480DOI
9 
Ma R., Mar 2017, A 77-dB Dynamic Range Low-Power Variable-Gain Transimpedance Amplifier for Linear LADAR, IEEE Trans. on Circuits and Systems II: Express Briefs, Vol. 65, No. 2, pp. 171-175DOI
10 
Zheng H., Apr 2018, High Sensitivity and Wide Dynamic Range Analog Front-End Circuits for Pulsed TOF 4-D Imaging LADAR Receiver, IEEE Sensors Journal, Vol. 18, No. 8, pp. 3114-3124DOI
11 
Ma R., Apr 2019, A 66dB Linear Dynamic Range, 100dBΩ Transimpedance Gain TIA with High Speed PDSH for LiDAR, IEEE Trans. On Instrumentation & Measurement, early accessDOI
12 
Cho H.-S. , Oct 2014, A high-sensitivity and low-walk error LADAR receiver for military application, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 61, No. 10, pp. 3007-3015DOI
13 
S. Kurtti 이름, Mar 2017, A Wide Dynamic Range CMOS Laser Radar Receiver With a Time-Domain Walk Error Compensation Scheme, IEEE Trans. Circuits Syst. I, Reg., Vol. 64, No. 3, pp. 550-561DOI
14 
Kim H.-J , Mar 2019, A High-Multi Target Resolution Focal Plane Array-Based Laser Detection and Ranging Sensor, Sensors., Vol. 19, No. 5, pp. 1210-DOI
15 
Nissinen J. , 2011, Integrated CMOS Circuits for Laser Radar Transceivers, OULU. University Press, pp. 23-25Google Search
16 
Asaka K., Feb 2001, 1.5-μm eye-safe coherent lidar system for wind velocity measurement, Proc. SPIE, Vol. 4153, pp. 1-8DOI
17 
Ziemer R., 1985, Principles of communi-cations (2nd ed.). Boston, MA: Houghton MifflinGoogle Search
18 
Zheng H., Apr 2018, A Linear Dynamic Range Receiver with Timing Discrimination for Pulsed TOF Imaging LADAR Application, IEEE Trans. On Instrumentati on & Measurement, Vol. 67, No. 11, pp. 2684-2691DOI
19 
Stettner R., Jun 2008, Three dimensional Flash LADAR focal planes and time dependent imaging, Int. J. High Speed Electron. Syst., Vol. 18, No. 2, pp. 401-406DOI
20 
Lee E.-G, Jul 2017, Switched 4-to-1 Transimpedance Combining Amplifier for Receiver Front-End Circuit of Static Unitary Detector-Based LADAR System, Appl. Sci., Vol. 7, No. 7, pp. 689DOI
21 
Lee E.-G, Mar 2018, A Linear Dynamic Range Receiver with Timing Discrimination for Pulsed TOF Imaging LADAR Application, Analog Integrated Circuits and Signal Processing, Vol. 94, No. 3, pp. 481-495DOI
22 
Ngo T. H., Feb 2013, Wideband receiver for a three-dimensional ranging LADAR system, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 60, No. 2, pp. 448-456DOI
23 
Park S.-M, Jan 2004, 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications, IEEE J. Solid-State Circuits, Vol. 39, No. 1, pp. 112-121DOI
24 
Stevens A. E., Dec 1989, A Time-to-Voltage Converter and Analog Memory for Colliding Beam Detectors, IEEE J. Solid-State Circuits, Vol. 24, No. 6, pp. 1748-1752DOI
25 
Li C., Dec 2013, A low-power 26-GHz transformer-based regulated cascode SiGe BiCMOS transimpedance amplifier, IEEE J. Solid-State Circuits, Vol. 48, No. 5, pp. 1264-1275DOI
26 
Zheng H., Jul 2019, A Linear-array Receiver Analog Front End Circuit for Rotating Scanner LiDAR Application, IEEE Sensors Journal, Vol. 19, No. 3, pp. 5053-5061DOI
27 
Hong C., Sep 2018, A Linear-Mode LiDAR Sensor Using a Multi-Channel CMOS Transimpedance Amplifier Array, IEEE Sensors Journal, Vol. 18, No. 17, pp. 7032-7040DOI
28 
Hintikka M., Sep 2017, A 700 MHz laser radar receiver realized in 0.18 μm HV-CMOS, Analog Integrated Circuits and Signal Processing, Vol. 93, No. 2, pp. 245-256DOI
29 
Product Datasheet MODEL 755., Available online: https://analogmodules.com/data-sheets/Analog.Google Search