Mobile QR Code QR CODE

REFERENCES

1 
Seabaugh A. C., Zhang Q., Dec 2010, Low voltage tunnel transistors for beyond CMOS logic, Proc. IEEE 98, pp. 2095-2110DOI
2 
Bernstein K., 2010, Device and architectures outlook for beyond CMOS switches, Proc. IEEE 98, pp. 2169-2184DOI
3 
Schwierz F., 2010, Graphene transistors, Nature Nanotech, Vol. 5, pp. 487-496.DOI
4 
Datta S., Liu H., Narayanan V., 2014, Tunnel FET Technology: A Reliability Perspective, Microelectronis Reability, Vol. 54, No. , pp. 861-874.DOI
5 
Appenzeller J., 2004, Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors, Physics Review Letter, Vol. 93, No. 196805DOI
6 
Zhu Y., Hudait M. K., 2013, Low-Power Tunnel Field Effect Transistors Using Mixed As and Sb Based Heterostructures, Nanotechnology Review, Vol. 2, pp. 637-678DOI
7 
Mohata D., 2012, Demonstration of Improved Heteroepitaxy, Scaled Gate Stack and Reduced Interface States Enabling Heterojunction Tunnel FETs with High Drive Current and High on-off Ratio, VLSI technology (VLSIT) Symposium, pp. 53-44DOI
8 
Zhao H., 2011, Improving the On-Current of In07Ga03As Tunneling Field-Effect-Transistors by p++/n+ Tunneling Junction, Applied. Phys. Lett., Vol. 98, No. , pp. -DOI
9 
Noguchi M., 2015, High $I_{ON}$/$I_{OFF}$ and low subthreshold slope planar-type InGaAs tunnel field effect transistors with Zn-diffused source junctions, Journal of Applied Physics, Vol. 118, No. 4, pp. 045712-DOI
10 
Tomioka K., Fukui T., 2014, Current increment of tunnel field-effect transistor using InGaAs nanowire/Si heterojunction by scaling of channel length, Appl. Phys. Lett., Vol. 104, No. 073507DOI
11 
Zhan Z., 2012, A tunnel-induced injection field-effect transistor with steep subthreshold slope and high on-off current ratio, Appl. Phys. Lett., Vol. 100, No. 113512DOI
12 
Tomioka K., Fukui T., 2011, Tunnel field-effect transistor using InAs nanowire/Si heterojunction, Applied Physics Letter, Vol. 98, No. 083114DOI
13 
Choi W. Y., 2007, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 $mV/dec$, IEEE Electron Device Lett., Vol. 28, No. 8, pp. 743-745DOI
14 
Bhuwalka K. K., Schulze J., Eisele I., 2004, Performance enhancement of vertical tunnel field-effect transistor with SiGe in the p+ layer, Jpn. J. Appl. Phys., Vol. 43, pp. 4073-4078Google Search
15 
Wang L., 2010, Design of Tunneling Field-Effect Transistors Based on Staggered Heterojunctions for Ultralow-Power Applications, IEEE Electron Device Lett., Vol. 31, No. 5, pp. 431-433DOI
16 
Moselund K. E., 2012, InAs-Si Nanowire Heterojunction Tunnel FETs, IEEE Electron Device Lett., Vol. 33, No. 10, pp. 1453-1455DOI
17 
Appenzeller J., 2005, Comparing carbon nanotube transistors-The ideal choice: A novel tunneling device design, IEEE Trans. Electron Devices, Vol. 52, No. 12, pp. 2568-2576DOI
18 
Poli S., 2008, Computational study of the ultimate scaling limits of CNT tunneling devices, IEEE Trans. Electron Devices, Vol. 55, No. 1, pp. 313-321DOI
19 
Radisavljevic B., 2011, Single-layer MoS2 transistors, Nature Nanotech., Vol. 6, pp. 147-150DOI
20 
Fang H., 2012, High Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts, Nano Lett., Vol. 12, No. 7, pp. 3788-3792DOI
21 
Butler. S. Z., 2013, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS nano, Vol. 7, No. 4, pp. 2898-2926DOI
22 
Fiori G., 2014, Electronics based on two-dimensional materials, Nature Nanotech., Vol. 9, pp. 768-779DOI
23 
Jariwala D., 2014, Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides, ACS Nano, Vol. 8, No. 2, pp. 1102-1120DOI
24 
Britnell L., 2012, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, Vol. 335, No. 6071, pp. 947-950DOI
25 
Schwierz F., 2013, Graphene transistors: status, prospects, and problems, Proc. IEEE, Vol. 101, No. 7, pp. 1567-1584DOI
26 
Novoselov K. S., 2004, Electric field effect in atomically thin carbon films, Science, Vol. 306, No. 5696, pp. 666-669DOI
27 
Berger C., 2006, Electronic confinement and coherence in patterned epitaxial graphene, Science, Vol. 312, No. 5777, pp. 1191-1196DOI
28 
Li X., 2008, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, Vol. 319, No. 5867, pp. 1229-1232DOI
29 
Raza H., Kan E. C., 2008, Armchair graphene nanoribbons: Electronic structure and electric-field modulation, Physical Review B, Vol. 77, No. 24, pp. 245434DOI
30 
Wu Y., 2011, Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model, Nanoscale Research Letters, Vol. 6, No. 62DOI
31 
Bena C., Motambux G., 2009, Remarks on The Tight-Binding Model of Graphene, New Journal of Physics, Vol. 11, No. 095003Google Search
32 
Gruneis A., 2008, Tight-Binding Description of The Quasiparticle Dispersion of Graphite and Few-Layer Graphene, Physical Review B, No. 78, pp. 205425DOI
33 
Gruneis A., 2009, Angle-Resolved Photoemission Study of The Graphite Intercalation Compound KC8: A Key to Graphene, Physical Review B, Vol. 80, No. 075431DOI
34 
Katsnelson M. I., Novoselov K. S., Geim A. K., 2006, Chiral tunnelling and the Klein paradox in graphene, Nature Phys., Vol. 2, No. , pp. 620-625DOI
35 
Brey L., Fertig H. A., 2006, Electronic states of graphene nanoribbons, Phys. Rev. B, Vol. 73, No. 235411DOI
36 
Son Y. W., Cohen M. L., Loui S. G., 2006, Energy gaps in graphene nanoribbons, Phys. Rev.Lett., Vol. 97, No. 216803DOI
37 
Chen Z., 2007, Graphene nano-ribbon electronics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, No. 2, pp. 228-232DOI
38 
Wang X., 2008, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors, Phys. Rev. Lett., Vol. 100, No. 20, pp. 206803DOI
39 
Xia F., 2010, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano Lett., Vol. 10, No. 2, pp. 715-718DOI
40 
Son J. G., 2013, Sub-10 nm Graphene Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography, Advanced Materials, Vol. 25, No. 34, pp. 4723-4728DOI
41 
Zschieschang U., 2015, Electrical Characteristics of Field-Effect Transistors based on Chemically Synthesized Graphene Nanoribbons, Advanced Electronic Materials, Vol. 1, No. 3DOI
42 
Hwang W. S., 2015, Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates, APL Materials, Vol. 3, No. 1, pp. 011101DOI
43 
David J. K., Register L. F., Banerjee S. K., 2012, Semiclassical Monte Carlo Analysis of Graphene FETs, IEEE Trans. Electron Dev., Vol. 59, No. 4, pp. 976-982DOI
44 
Paussa A., 2014, Simulation of the Performance of Graphene FETs With a Semiclassical Model, Including Band-to-Band Tunneling, IEEE Trans. Electron Dev., Vol. 61, No. 5, pp. 1567-1574DOI
45 
Pugnaghi C., 2014, Semianalytical quantum model for graphene field-effect transistors, J. Appl. Phys., Vol. 116, pp. 114505DOI
46 
Fiori G., Ianaccoce G., 2007, Simulation of Graphene Nanoribbon Field-Effect Transistors, IEEE Electron Dev. Lett., Vol. 28, No. 8, pp. 760-762DOI
47 
Zhao P., Chauhan J., 2009, Computational Study of Tunneling Transistor Based on Graphene Nanoribbon, Nano Lett., Vol. 9, pp. 684-680DOI
48 
Noei M., Moradinasab M., Fathipour M., 2012, A computational study of ballistic graphene nanoribbon field effect transistors, Physica E, Vol. 44, pp. 1780-1786DOI
49 
Mohamadpour H., Asgari A., 2012, Graphene nanoribbon tunneling field effect transistors, Physica E, Vol. 46, pp. 270-273DOI
50 
Yousefi R., 2013, A computational study on electrical characteristics of a novel band-to-band tunneling graphene nanoribbon FET, Superlattices & Microstructures, Vol. 60, pp. 169-178DOI
51 
Chin S-K., 2010, Device Physics and Characteristics of Graphene Nanoribbon Tunneling FETs, IEEE Trans. Electron Dev., Vol. 57, No. 11, pp. 3144-3152DOI
52 
Lam K-T., 2010, A Simulation Study of Graphene-Nanoribbon Tunneling FET With Heterojunction Channel, IEEE Electron Dev. Lett., Vol. 31, No. 6, pp. 555-557DOI
53 
Chauhan J., Guo J., 2011, Assessment of high-frequency performance limits of graphene field-effect transistors, Nano Res., Vol. 4, No. 6, pp. 571-579DOI
54 
Zhang Q., 2008, Graphene Nanoribbon Tunnel Transistors, IEEE Electron Dev. Lett., Vol. 29, No. 12, pp. 1344-1346DOI
55 
Sarkar D., Krall M., Banerjee K., 2010, Electron-hole duality during band-to-band tunneling process in graphene-nanoribbon tunnel-field-effect-transistors, Appl. Phys. Lett., Vol. 97, No. 26, pp. 263109DOI
56 
Putro C. B. S., 2014, A Theoretical Model of Band-to-band Tunneling Current in an Armchair Graphene Nanoribbon Tunnel Field-Effect Transistor, Adv. Mater. Res., Vol. 896, pp. 371-374Google Search
57 
Suhendi E., 2014, Simulation of Dirac Tunneling Current of an Armchair Graphene Nanoribbon-Based p-n Junction Using a Transfer Matrix Method, Adv. Mater. Res., Vol. 974, pp. 205-209DOI
58 
Suhendi E., 2014, Simulation of Drain Current of Double Gated Armchair Graphene Nanoribbon Field-Effect Transistor by Solving Dirac, Journal of Physics: Conf. Ser., Vol. 539, No. 012020Google Search
59 
Suhendi E., 2015, Modeling of Dirac Electron Tunneling Current in Bipolar Transistor Based on Armchair Graphene Nanoribbon Using a Transfer Matrix Method, Adv. Com. Sci. Res., Vol. 5, pp. 164-166DOI
60 
Abdolkader T. M., Hassan M. H., Fikry W., 2004, Solution of Schrödinger equation in double-gate MOSFETs using transfer matrix method, Electron Lett., Vol. 40, No. 20, pp. 1307-1308DOI
61 
Shangguan W. Z., 2005, Compact gate-current model based on transfer-matrix method, J. Appl. Phys., Vol. 97, No. 123709DOI
62 
Cattelan M., 2013, Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures, Chem Mater, Vol. 25, pp. 1490-1495DOI
63 
Gebhardt J., 2013, Growth and electronic structure of boron-doped graphene, Phys Rev B, Vol. 87, No. 155437DOI
64 
Tang Y. B., 2012, Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma, ACS Nano, Vol. 6, No. 3, pp. 1970-1978DOI
65 
Wei D., 2009, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Letters, Vol. 9, No. 5, pp. 1752-1758DOI
66 
Suhendi E., 2019, Comparison of tunneling currents in graphene nanoribbon tunnel field effect transistors calculated using Dirac-like equation and Schrdinger's equation, J. Semicond., Vol. 40, No. 6, pp. 062002Google Search
67 
Tiwari M., 2015, Impact of Oxide Thickness on Gate Capacitance, Drain Current and Transconductance - A Comprehensive analysis on MOSFET, Nanowire FET and CNTFET Devices, Int. Jou. for Research in Emerging Science and Technology, Vol. 2, pp. 73-85Google Search
68 
Bolotin K. I., 2008, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Communication, Vol. 146, pp. 351-355DOI
69 
Du X., 2008, Approaching Ballistic Transport in Suspended Graphene, Nature Nanotechnology, Vol. 3, pp. 491-495DOI
70 
Jena D., 2008, Zener Tunneling in Semiconducting Nanotube and Graphene Nanoribbon p−n Junctions, Appl. Phys. Lett., Vol. 93, pp. 112106DOI