Mobile QR Code QR CODE

REFERENCES

1 
Seok O., Vol 88, Effects of junction profiles in bottom protection p-well on electrical characteristics of 1.2 kV SiC trench-gate MOSFETs, Microelectron. Eng., Vol. 88, No. 3, pp. 111-280DOI
2 
Seok O., May 2018, Effects of trench profile and self-aligned ion implantation on electrical characteristics of 1.2 kV 4H-SiC trench MOSFETs using bottom protection p-well, Jpn. J. Appl. Phys., Vol. 57, No. 6, pp. 06HC07DOI
3 
Conti F., Conti M., 1972, Surface Breakdown in Silicon Planar Diodes Equipped with Field Plate, Solid-State Electronics, Vol. PS-15, pp. 93-105DOI
4 
Tarplee M. C., Madangarli V.P., Zhang Quinchun, Dec 2001, Design rules for field plate edge termination in SiC Schottky diodes, IEEE Trans. Electron Devices, Vol. 48, No. 12, pp. 2659-2664DOI
5 
Brieger K.- P., Gerlach W., Pelka J., Aug 1983, Blocking capability of planar devices with field limiting rings, Solid State Electronics, Vol. 26, No. 8, pp. 739-745DOI
6 
Sheridan D. C., Aug 2000, Design and fabrication of planar guard ring termination for high-voltage SiC diodes, Solid-State Electronics, Vol. 44, No. 8, pp. 1367-1372DOI
7 
Temple V. A. K., Adler M.S., Oct 1975, Calculation of the diffusion curvature related avalanche breakdown in high-voltage planar p-n junctions, IEEE Trans. Electron Devices, Vol. 22, No. 10, pp. 910-916DOI
8 
Temple V. A. K., Dec 1977, Junction termination extension (JTE), A new technique for increasing avalanche breakdown voltage and controlling surface electric fields in P-N junctions, in International Electron Devices Meeting, IEEEDOI
9 
Sheridan D. C., June 2001, Comparison and optimization of edge termination techniques for SiC power devices, In Proceedings of the 1999 IEEE Int. Symp. Power Semiconductor Device and ICs, 191, Osaka, JapanDOI
10 
Temple V. A. K., Aug 1983, Increased Avalanche Breakdown Voltage and Controlled Surface Electric fields using a Junction Termination Extension (JTE), IEEE Trans. Electron Devices, Vol. 30, pp. 954-957DOI
11 
Trost J. R., May 1999, The effect of charge in junction termination extension passivation dielectrics, In Proceedings of the 1999 IEEE Int. Symp. Power Semiconductor Device and ICs, Toronto, CanadaDOI
12 
Ghandi R., Oct 2010, Surface-Passivation Effects on the Performance of 4H-SiC BJTs, IEEE Trans. Electron Devices, Vol. 58, No. 1, pp. 259-265DOI
13 
Jiang Y. F., Baliga B. J., June 2018, Influence of lateral straggling of implanted aluminum ions on high voltage 4H-SiC device edge termination design, Mater. Sci. Forum, Vol. 924, pp. 361-364DOI
14 
Sung W., Brunt E. V., Baliga B. J., Huang Alex Q., May 2011, A New Edge Termination Technique for High-Voltage Devices in 4H-SiC-Multiple-Floating-Zone Junction Termination extension, IEEE Electron Device Lett., Vol. 32, No. 7, pp. 880-882DOI
15 
Kinoshita K., Hatakeyama T., Takikawa O., Yahata A., Shinohe T., June 2002, A new termination structure providing stable and high breakdown voltages for SiC power devices, In proceedings of the 2002 IEEE Int. Symp. Power Semiconductor Device and ICs, New Mexico, USAGoogle Search
16 
Sung W., Baliga B. J., Dec 2016, A near ideal edge termination technique for 4500V 4H-SiC devices: The hybrid junction termination extension, IEEE Electron Device Lett., Vol. 37, No. 12, pp. 1609-1612DOI
17 
Yilmaz H., Jul 1991, Optimization and surface charge sensitivity of high-voltage blocking structures with shallow junctions, IEEE Trans. Electron Devices, Vol. 38, No. 7, pp. 1666-1675DOI
18 
Korec J., Held R., Oct 1993, Comparison of DMOS/IGBT-compatible high-voltage termination structure and passivation techniques, IEEE Trans. Electron Devices, Vol. 40, No. 10, pp. 1845-1854DOI
19 
Lipkin L. A., Das M. K., Palmour J. W., Apr 2002, N2O Processing Improves the 4H-SiC:SiO2 Interface, Mater. Sci. Forum, Vol. 389, pp. 985-988DOI
20 
Chung G. Y., Apr 2001, Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide, IEEE Electron Device Lett., Vol. 22, No. 4, pp. 176-178DOI
21 
Li H. F., Dimitrijev S., Harrison H. B., Sweatman D., Feb 1997, Interfacial characteristics of N2O and NO nitride SiO2 grown on SiC by rapid thermal processing, Appl. Phys. Lett., Vol. 70, No. 15DOI
22 
Kimoto T., Mar 2005, Interface Properties of Metal-Oxide-Semiconductor Structures on 4H-SiC{0001} and (1120) Formed by N2O Oxidation, Jpn. J. Appl. Phy., Vol. 44, No. 3, pp. 1213-1218DOI
23 
Baliga B. J., 2008, Fundamemtals of Power Semiconductor Devices, Springer: New YorkGoogle Search
24 
Kimoto T., Cooper J. A., 2014, Fundamentals of Silicon Carbide Technology, Wiley: New York, USAGoogle Search
25 
Sung W., Baliga B. J., Feb 2017, A Comparative Study 4500-V Edge Termination Techniques for SiC Devices, IEEE Trans. Electron Devices, Vol. 64, No. 4, pp. 1647-1652DOI
26 
Runhua H., Jul 2018, Development of 10 kV 4H-SiC JBS diode with FGR termination, J. Semicond., Vol. 35, pp. 074005DOI
27 
Runge H., Feb 1977, Distribution of implanted ions under arbitrarily shaped mask edges, Physica Status solidi (a), Vol. 39, pp. 595-599DOI
28 
Sakurai T., Jul 1979, Lateral Spread of P+ Ions Implanted in Silicon through the SiO2 Mask Window, J. Appl. Phys., Vol. 59, pp. 1287-1290DOI
29 
Jeffrey M. K., Sep 2006, A photolithographic method to create cellular micropatterns, Biomaterials, Vol. 27, No. 27, pp. 4755-4764DOI
30 
Müting J., Jan 2020, Lateral straggling of implanted aluminum in 4H-SiC, Appl. Phys. Lett., Vol. 116, No. 1, pp. 012101DOI
31 
Selberherr S., 1984, Analysis and Simulation of Semiconductor Devices, Springer: New York, USAGoogle Search
32 
Chynoweth A. G., Mar 1958, Ionization Rates for Electrons and Holes in Silicon, Phy. Rev., Vol. 109, No. 5, pp. 1537-1540DOI