Mobile QR Code QR CODE

REFERENCES

1 
Kim S. Y., Lee K. Y., 2015, A 1.248 Gb/s - 2.918 Gb/s Low-Power Receiver for MIPI-DigRF M-PHY with a Fast Settling Fully Digital Frequency Detection Loop in 0.11 m CMOS, Journal of Semiconductor Technology and Science, Vol. 15, No. 4, pp. 506-517DOI
2 
Hu K., Apr 2010, A 0.6 mW/Gb/s, 6.4-7.2 Gb/s Serial Gb/s Serial Link Receiver Using Local Injection-locked Ring Oscillator in 90 nm CMOS, IEEE J. Solid-State Circuits, Vol. 45, No. 4, pp. 899-908DOI
3 
Lancheres P., Hafed M., 2019, The MIPI C-PHY Standard: A Generalized Multiconductor Signaling Scheme, IEEE Solid-State Circuits Magazine, Vol. 11, No. 2, pp. 69-77DOI
4 
Choi S. W., Jang Y. C., 2020, A MIPI Receiver Bridge Chip Supporting 5-Gb/s/lane D-PHY and 3-Gsymbol/s/lane C-PHY, Journal of Semiconduc-tor Technology and Science, Vol. 20, No. 1, pp. 29-40DOI
5 
MIPI C-PHY , , [online] Available at: https://www. mipi.org/specifications/c-phy [Accessed 24 Dec. 2019]
6 
Kwak S. K., Kim S. Y., 2012, Power Integrity and Shielding Effectiveness Modeling of Grid Structured Interconnects on PCBs, Journal of Semiconductor Technology and Science, Vol. 12, No. 3, pp. 320-330DOI
7 
Caniggia S., Maradei F., Signal Integrity and Radiated Emission, Hoboken, pp. 355-407Google Search
8 
Song E., Cho J., Kim J., Shim Y., Kim G., Kim J., May 2010, Modeling and Design Optimization of a Wideband Passive Equalizer on PCB Based on Near-End Crosstalk and Reflections for High-Speed Serial Data Transmission, IEEE Trans. Electromagn. Compat., Vol. 52, No. 2, pp. 410-420DOI
9 
Lin D., Huang C., Ke H., May 2016, Using Stepped-Impedance Lines for Common-Mode Noise Reduction on Bended Coupled Transmission Lines, IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 6, No. 5, pp. 757-766DOI
10 
Bait-Suwailam M. M., Ramahi O. M., Apr 2012, Ultrawideband Mitigation of Simultaneous Switching Noise and EMI Reduction in High-Speed PCBs Using Complementary Split-Ring Resonators, IEEE Trans. Electromagn. Compat., Vol. 54, No. 2, pp. 389-396DOI
11 
Han Y., Huynh H. A., Kim S., Apr 2018, Pinwheel Meander-Perforated Plane Structure for Mitigating Power/Ground Noise in System-in-Package, IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 8, No. 4, pp. 562-569DOI
12 
Kim Y., Jun, 2017, Glass Interposer Electromagnetic Bandgap Structure for Efficient Suppression of Power Ground Noise Coupling, IEEE Trans. Electromagn. Compat., Vol. 59, No. 3, pp. 940-951DOI
13 
Kim M., Jun 2015, A Compact EBG Structure With Wideband Power/Ground Noise Suppression Using Meander-Perforated Plane, IEEE Trans. Elec-tromagn. Compat., Vol. 57, No. 3, pp. 595-598DOI
14 
Verma S., Rano D., Hashmi M. S., 2017, A novel miniaturized band stop filter using fractal type defected ground structure (DGS), IEEE Asia Pacific Microwave Conference (APMC), Vol. kuala lumpar, pp. 799-802DOI
15 
Chang I., Lee B., Jun 2002, Design of Defected Ground Structures for Harmonic Control of Active Microstrip Antennas, IEEE AP-S International Symposium, vol. 2, Vol. san antonio, No. tx,usa, pp. 852-855DOI
16 
Kumar A., Machavaram K. V., oct. 2013, Microstrip filter with defected ground structure: A close perspective, International Journal of Microwave and Wireless Technologies, Vol. 5, No. 5, pp. 589-602DOI
17 
Lee J. H., Sep 2019, A Novel Meander Split Power/Ground Plane Reducing Crosstalk of Traces Crossing Over, MDPI Electronics, Vol. 8, No. 9, pp. 1041DOI
18 
Sindhaevi M., Malathi K., Henridass A., Shrivastav A., Feb 2014, Crosstalk Reduction Using Defective Ground Plane Structures In RF Printed Circuit Boards, Arabian Journal for Science and Engineering, Vol. 39, No. 2, pp. 1107-1116DOI
19 
Henridass A., Sindhadevi M., Karthik N., Alsath M. G. N., Kumar R. R., Malathi K., 2012, Defective ground plane structure for broadband crosstalk reduction in PCBs, International Conference on Computing, Communication and Applications, pp. 1-5DOI
20 
ANSYS Electronics Desktop 2019 , 2019, ANSYS, Canonsburg, PA, USA. [Online]. Available: https://www.ansys.com/products/electronics