Mobile QR Code QR CODE

REFERENCES

1 
Asanovic K., Bodik R., Demmel J., Keaveny T., Keutzer K., Kubiatowicz J., Morgan N., Patterson D., Sen K., Wawrzynek J., Wessel D., Yelick K., Oct 2009, A view of the parallel computing landscape, Commun. ACM, Vol. 52, No. 10, pp. 56-67DOI
2 
Kindratenko V., Trancoso P., May-Jun 2011, Trends in High-Performance Computing, Comput. Sci. Eng., Vol. 13, No. 3, pp. 92-95DOI
3 
Birman K. P., Dec 1993, The process group approach to reliable distributed computing, Commun. ACM, Vol. 36, No. 12, pp. 37-54DOI
4 
Foster I., Zhao Y., Raicu I., Lu S., Nov 2007, Cloud Computing and Grid Computing 360-Degree Compared, Proc. 2008 Grid Computing Environments Workshop (GCE), Austin, TX, USA, pp. 12-16DOI
5 
Loeffler J., Jun. 15, 2021, AMD Zen 4 Epyc CPU could be an epic 128-core, 256-thread monster, Techradar, online available at https://www.techradar.com/news/Google Search
6 
Shilov A., Oct. 1, 2021, Arm-Based 128-Core Ampere CPUs Cost a Fraction of x86 Price, Tom’s Hardware, online available at https://www.tomshardware.com/news/ampere-altra-max-128-core-pricedGoogle Search
7 
IntelⓡCoreTMi9-10980XE Extreme Edition Processor (24.75M Cache, 3.00 GHz), online available at https://www.intel.com/content/www/us/en/products/sku/198017/intel-core-i910980xe-extreme-edition-processor-24-75m-cache-3-00-ghz/specifications.htmlGoogle Search
8 
IntelⓡCoreTMi9-10980XE Extreme Edition Processor (24.75M Cache, 3.00 GHz), online available at https://www.intel.com/content/www/us/en/products/sku/198017/intel-core-i910980xe-extreme-edition-processor-24-75m-cache-3-00-ghz/specifications.htmlGoogle Search
9 
Cho S., Sep 2021, Semiconductor Memory Devices for Hardware-Driven Neuromorphic Systems, MDPI BooksGoogle Search
10 
Mead C., Oct 1990, Neuromorphic Electronic Systems, Proc. IEEE, Vol. 78, No. 10, pp. 1629-1639DOI
11 
Silver D., et al. , Jan 2016, Mastering the game of Go with deep neural networks and tree search, Nature, Vol. 529, pp. 484-489DOI
12 
Moore D., Jun 2014, Neuromorphic Computing Gets Ready for the (Really) Big Time, Comm. ACM, Vol. 57, No. 6, pp. 13-15DOI
13 
Akopyan F., Oct 2015, TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 34, No. 10, pp. 1537-1557DOI
14 
Davies M., Wild A., Orchard G., Sandamirskaya Y., Guerra G. A. F., Joshi P., Plank P., Risbud S. R., May 2021, Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook, Proc. IEEE, Vol. 109, No. 5, pp. 911-934DOI
15 
Andreou A. G., May 2016, Real-time sensory information processing using the TrueNorth Neurosynaptic System, 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, Vol. qc, No. canada, pp. 22-25DOI
16 
Delbruck T., Liu S.-C., Systems, Data-Driven Neuromorphic DRAM-based CNN and RNN Accelerators, 2009 Sig. Proc. Soc. Asilomar Conference on SignalsDOI
17 
Baek S., Yoo B. E., Lee I., Cho S., un. 30 - Jun. 2, 2021, Design of Compact 2T(0C) DRAM Cell Allowing Nondestructive Read Operation and Glance at Its Applications as Synaptic Device, in Proc. 2021 IEIE Summer Conf., pp. 515-516, Jeju, KoreaGoogle Search
18 
Cho S., Baek S., Nov. 4, 2021, Two-Transistor Memory Cell, Synaptic Cell and Neuron Mimic Cell Using the Same and Operation Method Thereof, Korean Patent filed, Vol. 10-2021-0150751Google Search
19 
Wingfield nand A., Byrnes D. L., May 1972, Decay of Information in Short-Term Memory, Science, Vol. 176, No. 4035, pp. 690-692DOI
20 
Camina E., Güell F., Jun 2017, The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins, Front. Pharmacol., Vol. 8, pp. 438-1-438-16DOI
21 
Botvinick M. M., Plaut D. C., Apr 2006, Short-Term Memory for Serial Order: A Recurrent Neural Network Model, Psychol. Rev., Vol. 113, No. 2, pp. 201-233DOI
22 
Liu J., Zhang H., Yu T., Ni D., Ren L., Yang Q., Lu B., Wang D., Heinen R., Axmacher N., Xue G., Dec 2020, Stable maintenance of multiple representational formats in human visual short-term memory, PNAS, Vol. 117, No. 51, pp. 32329-32339DOI
23 
Ichikawa K., Kaneko K., Aug 2021, Short-term memory by transient oscillatory dynamics in recurrent neural networks, Phys. Rev. Res., Vol. 3, No. 3, pp. 033193-1-033193-9DOI
24 
Kim H., Cho S., Sun M.-C., Park J., Hwang S., Park B.-G., Oct 2016, Simulation Study on Silicon-Based Floating Body Synaptic Transistor with Short- and Long-Term Memory Functions and Its Spike Timing-Dependent Plasticity, J. Semicond. Technol. Sci., Vol. 16, No. 5, pp. 657-663DOI
25 
Lee Y. J., Cho S., Dec 2021, Predominance of Carrier Diffusion in Determination of Data Retention in One-Transistor Dynamic Random-Access Memory, J. Semicond. Technol. Sci., Vol. 21, No. 6, pp. 406-411DOI
26 
Lee Y. J., Cho S., Dec 2021, Predominance of Carrier Diffusion in Determination of Data Retention in One-Transistor Dynamic Random-Access Memory,, Vol. 21, No. 6, pp. 406-411DOI
27 
Cho Y., Lee J. Y., Yu E., Han J.-H., Baek M.-H., Cho S., Park B.-G., Jan 2019, Design and Characterization of Semi-Floating-Gate Synaptic Transistor, Micromachines, Vol. 10, No. 1, pp. 32-41DOI
28 
Yu E., Cho S., Park B.-G., Sep 2019, A Silicon-Compatible Synaptic Transistor Capable of Multiple Synaptic Weights toward Energy-Efficient Neuromorphic Systems, Electronics, Vol. 8, No. 10, pp. 1102-1-1102-12DOI
29 
Yu E., Cho S., Roy K., Park B.-G., Aug 2020, A Quantum-Well Charge-Trap Synaptic Transistor with Highly Linear Weight Tunability, IEEE J. Electron Devices Soc., Vol. 8, pp. 834-840DOI
30 
Ansari Md. H. R., Kannan U. M., Cho S., Jul 2021, Core-Shell Dual-Gate Nanowire Charge-Trap Memory for Synaptic Operations for Neuromorphic Applications, Nanomater., Vol. 11, No. 7, pp. 1773-1-1773-14DOI
31 
Ansari Md. H. R., Cho S., Lee J.-H., Park B.-G., Dec 2021, Core-Shell Dual-Gate Nanowire Memory as a Synaptic Device for Neuromorphic Application, IEEE J. Electron Devices Soc., Vol. 9, pp. 1282-1289DOI
32 
Eryilmaz S. B., Kuzum D., Jeyasingh R., Kim S. B., Brightsky M., Lam C., Wong H.-S. P., Jul 2014, Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array, Front. Neurosci., Vol. 8, pp. 205-1-205-11DOI
33 
Chen L., Wang T.-Y., Dai Y.-W., Cha M.-Y., Zhu H., Sun Q.-Q., Ding S.-J., Zhou P., Chua L., Zhang D. W., Sep 2018, Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications, Nanoscale, Vol. 10, No. 33, pp. 15826-15833DOI
34 
Srinivasan G., Sengupta A., Roy K., Jul 2016, Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning, Sci. Rep., Vol. 6, pp. 29545-1-2954513DOI
35 
Bang S., Kim M.-H., Kim T.-H., Lee D. K., Kim S., Cho S., Park B.-G., Dec 2018, Gradual switching and self-rectifying characteristics of Cu/α-IGZO/p+-Si RRAM for synaptic device application, Solid-State Electron., Vol. 150, pp. 60-65DOI
36 
Lee D. K., Kim M.-H., Kim T.-H., Bang S., Choi Y.-J., Kim S., Cho S., Park B.-G., Apr 2019, Synaptic behaviors of HfO2 ReRAM by pulse frequency modulation, Solid-State Electron., Vol. 154, pp. 31-35DOI
37 
Kim T.-H., Kim M.-H., Bang S., Lee D. K., Kim S., Cho S., Park B.-G., Jul 2020, Fabrication and Characterization of TiOx Memristor for Synaptic Device Application, IEEE Trans. Nanotechnol., Vol. 19, pp. 475-480DOI
38 
Ryu J.-H., Kim B., Hussain F., Ismail M., Mahata C., Oh T., Imran M., Min K. K., Kim T.-H., Yang B.-D., Cho S., Park B.-G., Kim Y., Kim S., Jul 2020, Zinc Tin Oxide Synaptic Device for Neuromorphic Engineering, IEEE Access, Vol. 8, pp. 130678-130686DOI
39 
Kim D., Jang J. T., Yu E., Park J., Min J., Kim D. M., Choi S.-J., Mo H.-S., Cho S., Roy K., Kim D., Aug 2020, Pd/IGZO/p+-Si Synaptic Device with Self-Graded Oxygen Concentration for Highly Linear Weight Adjustability and Improved Energy Efficiency, ACS Appl. Electron. Mater., Vol. 2, No. 8, pp. 2390-2397Google Search
40 
Kang D., Jang J. T., Park S., Ansari Md. H. R., Bae J.-H., Choi S.-J., Kim D. M., Kim C., Cho S., Kim D., Apr 2021, Threshold-Variation-Tolerant Coupling-Gate α-IGZO Synaptic Transistor for More Reliably Controllable Hardware Neuromorphic System, IEEE Access, Vol. 9, pp. 59345-59352DOI
41 
Rasheed U., Ryu H., Mahata C., Khalil R. M. A., Imran M., Rana A. M., Kousar F., Kim B., Kim Y., Cho S., Hussain F., Kim S., Oct 2021, Resistive switching characteristics and theoretical simulation of a Pt/α-Ta2O5/TiN synaptic device for neuromorphic applications, J. Alloys Compd., Vol. 877, pp. 160204-1-160204-10DOI
42 
Kim S., Jung S., Kim M.-H., Chen Y.-C., Chang Y.-F., Ryoo K.-C., Cho S., Lee J.-H., Park B.-G., May 2018, Scaling Effect on Silicon Nitride Memristor with Highly Doped Si Substrate, Small, Vol. 14, No. 19, pp. 1704062-1-1704062-8DOI
43 
Lee J. Y., Kim Y., Kim M.-H., Go S., Ryu S. W., Lee J. Y., Ha T. J., Kim S. G., Cho S., Park B.-G., Mar 2019, Ni/GeOx/p+ Si resistive-switching random-access memory with full Si processing compatibility and its characterization and modeling, Vacuum, Vol. 161, pp. 63-70DOI
44 
Kim M.-H., Cho S., Park B.-G., May 2021, Nanoscale wedge resistive-switching synaptic device and experimental verification of vector-matrix multiplication for hardware neuromorphic application, Jpn. J. Appl. Phys., Vol. 60, No. 5, pp. 050905-1Google Search
45 
Kim M.-H., Hwang S., Bang S., Kim T.-H., Lee D. K., Ansari Md. H. R., Cho S., Park B.-G., Sep 2021, A More Hardware-Oriented Spiking Neural Network Based on Leading Memory Technology and Its Application With Reinforcement Learning, IEEE Trans. Electron Devices, Vol. 68, No. 9, pp. 4411-4417DOI
46 
Stone H. S., Jan 1970, A Logic-in-Memory Computer, IEEE Trans. Compt., Vol. c-19, No. 1, pp. 73-78DOI
47 
Gokhale M., Holmes N., Iobst K., Apr 1995, Processing in Memory: The Terasys Massively Parallel PIM Array, IEEE Comput., Vol. 28, No. 4, pp. 23-31DOI
48 
UPMEM PIM Soluition: DRAM Processing Unit (DPU), UPMEM Official website, online available at https://www.upmem.com/technology/Google Search
49 
HBM PIM: Memory redesigned to advance AI, Samsung official website, online available at https://www.samsung.com/semiconductor/solutions/technology/hbm-processing-in-memory/Google Search
50 
Sebastian A., Gallo M. L., Khaddam-Aljameh R., Eleftheriou E., Jul 2020, Memory devices and applications for in-memory computing, Nat. Nanotechnol., Vol. 15, pp. 529-544DOI
51 
Agrawal A., Jaiswal A., Lee C., Roy K., Dec 2018, X-SRAM: Enabling In-Memory Boolean Computations in CMOS Static Random Access Memories, IEEE Trans. Circuits Syst. I Regul. Pap., Vol. 65, No. 2, pp. 4219-4232DOI
52 
Seshadri V., Hsieh K., Boroum A., Lee D., Kozuch M. A., Mutlu O., Gibbons P. B., Mowry T. C., Jul-Dec 2015, Fast Bulk Bitwise AND and OR in DRAM, IEEE Comput. Archit. Lett., Vol. 14, No. 2, pp. 127-131DOI
53 
Seshadri V., Lee D., Mullins T., Hassan H., Boroumand A., Kim J., Kozuch M. A., Mutlu O., Gibbons P. B., Mowry T. C., Abmit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology, Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50), pp. 273-287Google Search
54 
Lee J., Park B.-G., Kim Y., Sep 2019, Implementation of Boolean Logic Functions in Charge Trap Flash for In-Memory Computing, IEEE Electron Device Lett., Vol. 40, No. 9, pp. 1358-1361DOI
55 
Kingra S. K., Parmar V., Chang C.-C., B.-Hudec , Hou T.-H., Suri M., Feb 2020, SLIM: Simultaneous Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Device, Sci. Rep., Vol. 10, pp. 2567-1-2567-64DOI
56 
Li Y., Zhong Y. P., Deng Y. F., Zhou Y. X., Xu L., Miao X. S., Dec 2013, Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory, J. Appl. Phys., Vol. 114, No. 23, pp. 234503-1-234503-4DOI
57 
Kim M., Lee K., Kim S., Lee J.-H., Park B.-G., Kwon D., Nov 2021, Double-Gated Ferroelectric-Gate Field-Effect Transistor for Processing in Memory, IEEE Electron Device Lett., Vol. 42, No. 11, pp. 1607-1610DOI
58 
Gonzalez-Zalba M. F., Ciccarelli C., Zarbo L. P., Irvine A. C., Campion R. C., Gallagher B. L., Jungwirth T., Ferguson A. J., Wunderlich J., Apr 2015, Reconfigurable Boolean Logic Using Magnetic Single-Electron Transistors, PLoS One, Vol. 10, No. 4, pp. 0125142-1-0125142-8Google Search