Mobile QR Code QR CODE

References

1 
Lee J., Han S., Lee J., Kang B., Bae J., Jang J., Oh S., Ahn S., Kang S., Bui Q., Son K., Lim H., Jeong D., Ni R., Zuo Y., Jong I., Yao C., Heo S., Cho T., Kang I., Dec. 2019, A sub-6GHz 5G new radio RF transceiver supporting EN-DC with 3.15Gb/s DL and 1.27Gb/s UL in 14nm FinFET CMOS, IEEE J. Solid-State Circuits, Vol. 54, No. 12, pp. 3541-3552DOI
2 
Tsai M., Yang S., Yu C., Chen P., Wu T., Hassan M., Chen C., Wang C., Huang Y., Hung L., Chiu W., Lin A., Lin B., Werquin A., Lin C., Chen Y., Tsai J., Fu Y., Tenbroek B., Chiu C., Lee Y., Dehng G., Feb. 2020, A 12nm CMOS RF transceiver supporting 4G/5G UL MIMO, in IEEE Int. Solid-State Circuits Conf. Tech. Dig., San Francisco, CA, pp. 176-177DOI
3 
Blaakmeer S. C., Klumperink E. A. M., Leenaerts D. M. W., Nauta B., Jun. 2008, Wideband balun-LNA with simultaneous output balancing, noise canceling and distortion-canceling, IEEE J. Solid-State Circuits, Vol. 43, No. 6, pp. 1341-1350DOI
4 
Wang H., Zhang L., Yu Z., Aug. 2010, A Wideband inductorless LNA with local feedback and noise cancelling for low-power low-voltage applications, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 57, No. 8, pp. 1993-2005DOI
5 
Kim J., Silva-Martinez J., Sept. 2012, Wideband inductorless balun-LNA employing feedback for low-power low-voltage applications, IEEE Trans. Microw. Theory Tech., Vol. 60, No. 9, pp. 2833-2842DOI
6 
Kim S., Kwon K., Feb. 2019, A 50 MHz-1 GHz 2.3-dB NF noise-cancelling balun-LNA employing a modified current-bleeding technique and balanced Loads, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 66, No. 2, pp. 546-554DOI
7 
Kim S., Kwon K., Dec. 2020, Broadband balun-LNA employing local feedback g$_{m}$-boosting technique and balanced loads for low-power low-voltage applications, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 67, No. 12, pp. 4631-4640DOI
8 
Shin D., Lee K., Kwon K., A blocker-tolerant receiver front end employing dual-band N-path balun-LNA for 5G new radio cellular applications, Early access in IEEE Trans. Microw. Theory TechDOI
9 
Lee D., Kwon K., Nov. 2021., A blocker-tolerant balun-LNTA employing LC notch filter for 5G new radio cellular applications, in The Sixth International Conference on On Consumer Electronics Asia (IEEE/IEIE ICCE-Asia 2021), Kangwon, KoreaDOI
10 
Kwon K., Kim S., Son K., Nov. 2018, A hybrid transformer-based CMOS duplexer with a single-ended notch-filtered LNA for highly integrated tunable RF front-ends, IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 11, pp. 1032-1034DOI
11 
Vallese A., Bevilacqua A., Sandner C., Tiebout M., Gerosa A., Neviani A., Feb. 2009, Analysis and design of an integrated notch filter for the rejection of interference in UWB systems, IEEE J. Solid-State Circuits, Vol. 44, No. 2, pp. 331-343DOI
12 
Darabi H., Dec. 2007, A blocker filtering technique for SAW-less wireless receivers, IEEE J. Solid-State Circuits, Vol. 42, No. 12, pp. 2766-2773DOI
13 
Lee D., Kwon K., CMOS channel-selection LNA with a feedforward N-path filter and calibrated blocker cancellation path for FEM-less cellular transceivers, Early access in IEEE Trans. Microw. Theory Tech.DOI
14 
Qi G., Liempd B., Mak P., Martins R., Craninckx J., May 2018, A SAW-less tunable RF front end for FDD and IBFD combining an electrical-balance duplexer and a switched-LC N-path LNA, IEEE J. Solid-State Circuits, Vol. 53, No. 5, pp. 1431-1442DOI
15 
Kim T., Lee D., Kwon K., March. 2020, CMOS channel-selection low-noise amplifier with high-Q RF band-pass/band-rejection Filter for highly integrated RF front-ends, IEEE Microw. Compon. Lett., Vol. 30, No. 3, pp. 280-283DOI
16 
Luo C., Gudem P., Buckwalter J., Apr. 2016, A 0.4-6-GHz 17-dBm B1dB 36-dBm IIP3 channel-selecting low-noise amplifier for SAW-less 3G/4G FDD diversity receivers, IEEE Trans. Microw. Theory Techn., Vol. 64, No. 4, pp. 1110-1121DOI
17 
Mak P., Martins R., Sept. 2011, A 0.46-mm2 4-dB NF unified receiver front-end for full-band mobile TV in 65-nm CMOS, IEEE J. Solid-State Circuits, Vol. 46, No. 9, pp. 1970-1984DOI