Mobile QR Code QR CODE

References

1 
Gram L., Ravn L., Rasch M., Bruhn J.B., Christensen A.B., Givskov M., 2002, Food spoilage—interactions between food spoilage bacteria, International Journal of Food Microbiology, Vol. 78, pp. 79-97DOI
2 
Scott W.J., 1957, Water relations of food spoilage microorganisms, Advances in food research, Elsevier, pp. 83-127DOI
3 
Brito‐Ravicini A., Calle‐Vallejo F., 2022, Interplaying coordination and ligand effects to break or make adsorption‐energy scaling relations, Exploration, Vol. 2, pp. 20210062DOI
4 
Lee S.A., Yang J.W., Choi S., Jang H.W., 2021, Nanoscale electrodeposition: Dimension control and 3D conformality, Exploration, Wiley Online Library, pp. 20210012DOI
5 
Zhong R., Xu X., Wang L., Food supply chain management: systems, implementations, and future research, Industrial Management & Data Systems, Vol. 2017DOI
6 
WHO , 2020, Food safety, in: WHO (Ed.)Google Search
7 
Chan S.T., Yao M.W., Wong Y., Wong T., Mok C., Sin D.W., 2006, Evaluation of chemical indicators for monitoring freshness of food and determination of volatile amines in fish by headspace solid-phase microextraction and gas chromatography-mass spectrometry, European Food Research and Technology, Vol. 224, pp. 67-74DOI
8 
Chen Y., Gao Z., Zhang F., Wen Z., Sun X., 2022, Recent progress in self‐powered multifunctional e‐skin for advanced applications, Exploration, Vol. 2, pp. 20210112DOI
9 
Demon S.Z.N., Kamisan A.I., Abdullah N., Noor S.A.M., Khim O.K., Kasim N.A.M., Yahya M.Z.A., Manaf N.A.A., Azmi A.F.M., Halim N.A., 2020, Graphene-based materials in gas sensor applications: A review, Sens. Mater, Vol. 32, pp. 759-777DOI
10 
Rakow N.A., Suslick K.S., 2000, A colorimetric sensor array for odour visualization, Nature, Vol. 406, pp. 710-713DOI
11 
Bhushan B., Bhushan B., Baumann , Springer handbook of nanotechnology, Springer2007Google Search
12 
Liu X., Cheng S., Liu H., Hu S., Zhang D., Ning H., 2012, A survey on gas sensing technology, sensors, Vol. 12, pp. 9635-9665Google Search
13 
Nisar A., Khan M.A., Hussain Z., 2022, Synthesis and characterization of PANI/MOF-199/Ag nanocom-posite and its potential application as non-enzymatic electrochemical sensing of dopamine, Journal of the Korean Ceramic Society, pp. 1-11DOI
14 
Naim N., Abdullah H., Hamid A., 2019, Influence of Ag and Pd contents on the properties of PANI–Ag–Pd nanocomposite thin films and its performance as electrochemical sensor for E. coli detection, Electronic Materials Letters, Vol. 15, pp. 70-79DOI
15 
Bruce J., Bosnick K., Heidari E.K., 2022, Pd-decorated ZnO nanoflowers as a promising gas sensor for the detection of meat spoilage, Sensors and Actuators B: Chemical, Vol. 355, pp. 131316DOI
16 
Tonezzer M., 2021, Single Nanowire Gas Sensor Able to Distinguish Fish and Meat and Evaluate Their Degree of Freshness, Chemosensors, Vol. 9, pp. 249DOI
17 
Jang J.S., Jung H.J., Chong S., Kim D.H., Kim J., Kim S.O., Kim I.D., 2020, 2D materials decorated with ultrathin and porous graphene oxide for high stability and selective surface activity, Advanced Materials, Vol. 32, pp. 2002723DOI
18 
Jang J.-S., Winter L.R., Kim C., Fortner J.D., Elimelech M., 2021, Selective and sensitive environmental gas sensors enabled by membrane overlayers, Trends in Chemistry, Vol. 3, pp. 547-560DOI
19 
Eom T.H., Cho S.H., Suh J.M., Kim T., Yang J.W., Lee T.H., Jun S.E., Kim S.J., Lee J., Hong S.H., 2022, Visible Light Driven Ultrasensitive and Selective NO2 Detection in Tin Oxide Nanoparticles with Sulfur Doping Assisted by l‐Cysteine, Small, pp. 2106613DOI
20 
Kim T.H., Hasani A., Kim Y., Park S.Y., Lee M.G., Sohn W., Nguyen T.P., Choi K.S., Kim S.Y., Jang H.W., 2019, NO2 sensing properties of porous Au-incorporated tungsten oxide thin films prepared by solution process, Sensors and Actuators B: Chemical, Vol. 286, pp. 512-520DOI
21 
Kim Y., Kwon K.C., Kang S., Kim C., Kim T.H., Hong S.-P., Park S.Y., Suh J.M., Choi M.-J., Han S., 2019, Two-dimensional NbS2 gas sensors for selective and reversible NO2 detection at room temperature, ACS sensors, Vol. 4, pp. 2395-2402DOI
22 
Park S.-W., Jeong S.-Y., Moon Y.K., Kim K., Yoon J.-W., Lee J.-H., 2022, Highly Selective and Sensitive Detection of Breath Isoprene by Tailored Gas Reforming: A Synergistic Combination of Macroporous WO3 Spheres and Au Catalysts, ACS Applied Materials & Interfaces, Vol. 14, pp. 11587-11596DOI
23 
Hencz L., Chen H., Wu Z., Qian S., Chen S., Gu X., Liu X., Yan C., Zhang S., 2022, Highly branched amylopectin binder for sulfur cathodes with enhanced performance and longevity, Exploration, pp. 20210131DOI
24 
Lee J., Liao H., Wang Q., Han J., Han J.H., Shin H.E., Ge M., Park W., Li F., 2022, Exploration of nanozymes in viral diagnosis and therapy, Exploration, pp. e20210086DOI
25 
Bulemo P.M., Kim I.-D., 2020, Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors, Journal of the Korean Ceramic Society, Vol. 57, pp. 24-39DOI
26 
Kim T.-H., Yoon J.-W., Lee J.-H., 2016, A Volatile Organic Compound Sensor Using Porous Co 3 O 4 Spheres, Journal of the Korean Ceramic Society, Vol. 53, pp. 134-138DOI
27 
Andrysiewicz W., Krzeminski J., Skarżynski K., Marszalek K., Sloma M., Rydosz A., 2020, Flexible gas sensor printed on a polymer substrate for sub-ppm acetone detection, Electronic Materials Letters, Vol. 16, pp. 146-155DOI
28 
Cho S.H., Suh J.M., Eom T.H., Kim T., Jang H.W., 2021, Colorimetric sensors for toxic and hazardous gas detection: A review, Electronic Materials Letters, Vol. 17, pp. 1-17DOI
29 
Eom T.H., Cho S.H., Suh J.M., Kim T., Lee T.H., Jun S.E., Yang J.W., Lee J., Hong S.-H., Jang H.W., 2021, Substantially improved room temperature NO 2 sensing in 2-dimensional SnS 2 nanoflowers enabled by visible light illumination, Journal of Materials Chemistry A, Vol. 9, pp. 11168-11178DOI
30 
Lee C.W., Suh J.M., Choi S., Jun S.E., Lee T.H., Yang J.W., Lee S.A., Lee B.R., Yoo D., Kim S.Y., 2021, Surface-tailored graphene channels, npj 2D Materials and Applications, Vol. 5, pp. 1-13DOI
31 
Wang C., Yin L., Zhang L., Xiang D., Gao R., 2010, Metal oxide gas sensors: sensitivity and influencing factors, sensors, Vol. 10, pp. 2088-2106DOI
32 
Barsan N., Koziej D., Weimar U., 2007, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, Vol. 121, pp. 18-35DOI
33 
Matsunaga N., Sakai G., Shimanoe K., Yamazoe N., 2002, Diffusion equation-based study of thin film semiconductor gas sensor-response transient, Sensors and Actuators B: Chemical, Vol. 83, pp. 216-221DOI
34 
Cui X., Zhang Z., Yang Y., Li S., Lee C.S., 2022, Organic radical materials in biomedical applications: State of the art and perspectives, Exploration, pp. 20210264DOI
35 
Park S.Y., Kim Y., Kim T., Eom T.H., Kim S.Y., Jang H.W., 2019, Chemoresistive materials for electronic nose: Progress, perspectives, and challenges, InfoMat, Vol. 1, pp. 289-316DOI
36 
Choopun S., Hongsith N., Wongrat E., 2012, Metal-oxide nanowires for gas sensors, Nanowires-Recent Advances, pp. 3-24DOI
37 
John A.T., Murugappan K., Nisbet D.R., Tricoli A., 2021, An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring, Sensors (Basel), Vol. 21DOI
38 
Love C., Nazemi H., El-Masri E., Ambrose K., Freund M.S., Emadi A., 2021, A Review on Advanced Sensing Materials for Agricultural Gas Sensors, Sensors (Basel), Vol. 21DOI
39 
Matindoust S., Farzi G., Nejad M.B., Shahrokhabadi M.H., 2021, Polymer-based gas sensors to detect meat spoilage: A review, Reactive and Functional Polymers, Vol. 165DOI
40 
Peris M., Escuder-Gilabert L., 2009, A 21st century technique for food control: electronic noses, Anal Chim Acta, Vol. 638, pp. 1-15DOI
41 
Chauhan A., 2014, GC-MS Technique and its Analytical Applications in Science and Technology, Journal of Analytical & Bioanalytical Techniques, Vol. 5Google Search
42 
Griffiths W.J., Wang Y., 2009, Analysis of neurosterols by GC-MS and LC-MS/MS, J Chromatogr B Analyt Technol Biomed Life Sci, Vol. 877, pp. 2778-2805DOI
43 
Ruiz-Matute A.I., Hernandez-Hernandez O., Rodriguez-Sanchez S., Sanz M.L., Martinez-Castro I., 2011, Derivatization of carbohydrates for GC and GC-MS analyses, J Chromatogr B Analyt Technol Biomed Life Sci, Vol. 879, pp. 1226-1240DOI
44 
Rodríguez A., Alquézar B., Peña L., 2013, Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal, New Phytologist, Vol. 197, pp. 36-48DOI
45 
Li C., Krewer G.W., Ji P., Scherm H., Kays S.J., 2010, Gas sensor array for blueberry fruit disease detection and classification, Postharvest Biology and Technology, Vol. 55, pp. 144-149DOI
46 
Paul V., Pandey R., Srivastava G.C., 2012, The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-An overview, J Food Sci Technol, Vol. 49, pp. 1-21DOI
47 
Zhao Q., Duan Z., Yuan Z., Li X., Si W., Liu B., Zhang Y., Jiang Y., Tai H., 2020, High performance ethylene sensor based on palladium-loaded tin oxide: Application in fruit quality detection, Chinese Chemical Letters, Vol. 31, pp. 2045-2049DOI
48 
Jeong S.Y., Moon Y.K., Kim T.H., Park S.W., Kim K.B., Kang Y.C., Lee J.H., 2020, A New Strategy for Detecting Plant Hormone Ethylene Using Oxide Semiconductor Chemiresistors: Exceptional Gas Selectivity and Response Tailored by Nanoscale Cr2O3 Catalytic Overlayer, Adv Sci (Weinh), Vol. 7, pp. 1903093DOI
49 
Esser B., Schnorr J.M., Swager T.M., 2012, Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness, Angew Chem Int Ed Engl, Vol. 51, pp. 5752-5756DOI
50 
Andre R.S., Ngo Q.P., Fugikawa-Santos L., Correa D.S., Swager T.M., 2021, Wireless Tags with Hybrid Nanomaterials for Volatile Amine Detection, ACS Sens, Vol. 6, pp. 2457-2464DOI
51 
Ghasemi-Varnamkhasti M., Mohtasebi S.S., Siadat M., Balasubramanian S., 2009, Meat quality assessment by electronic nose (machine olfaction technology), Sensors (Basel), Vol. 9, pp. 6058-6083DOI
52 
Matindoust S., Farzi A., Baghaei Nejad M., Shahrokh Abadi M.H., Zou Z., Zheng L.-R., 2017, Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods, Journal of Materials Science: Materials in Electronics, Vol. 28, pp. 7760-7768DOI
53 
Li S., Chen S., Zhuo B., Li Q., Liu W., Guo X., 2017, Flexible Ammonia Sensor Based on PEDOT:PSS/Silver Nanowire Composite Film for Meat Freshness Monitoring, IEEE Electron Device Letters, Vol. 38, pp. 975-978DOI
54 
Ma Z., Chen P., Cheng W., Yan K., Pan L., Shi Y., Yu G., 2018, Highly Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection, Nano Lett, Vol. 18, pp. 4570-4575DOI
55 
Tonezzer M., 2021, Single Nanowire Gas Sensor Able to Distinguish Fish and Meat and Evaluate Their Degree of Freshness, Chemosensors, Vol. 9DOI
56 
Bruce J., Bosnick K., Kamali Heidari E., 2022, Pd-decorated ZnO nanoflowers as a promising gas sensor for the detection of meat spoilage, Sensors and Actuators B: Chemical, Vol. 355DOI
57 
Tang X., Yu Z., 2020, Rapid evaluation of chicken meat freshness using gas sensor array and signal analysis considering total volatile basic nitrogen, International Journal of Food Properties, Vol. 23, pp. 297-305DOI
58 
Sujiwo J., Kim D., Jang A., 2018, Relation among quality traits of chicken breast meat during cold storage: correlations between freshness traits and torrymeter values, Poultry science, Vol. 97, pp. 2887-2894DOI
59 
Liu Q., Mukherjee S., Huang R., Liu K., Liu T., Liu K., Miao R., Peng H., Fang Y., 2019, Naphthyl End-Capped Terthiophene-Based Chemiresistive Sensors for Biogenic Amine Detection and Meat Spoilage Monitoring, Chem Asian J, Vol. 14, pp. 2751-2758DOI
60 
Liu S.F., Petty A.R., Sazama G.T., Swager T.M., 2015, Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage, Angew Chem Int Ed Engl, Vol. 54, pp. 6554-6557DOI
61 
Zhang W.-H., Zhang W.-D., 2008, Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes, Sensors and Actuators B: Chemical, Vol. 134, pp. 403-408DOI
62 
Wu K., Zhang W., Zheng Z., Debliquy M., Zhang C., 2022, Room-temperature gas sensors based on titanium dioxide quantum dots for highly sensitive and selective H2S detection, Applied Surface Science, pp. 152744DOI
63 
Park S.H., Kim B.-Y., Jo Y.K., Dai Z., Lee J.-H., 2020, Chemiresistive trimethylamine sensor using monolayer SnO2 inverse opals decorated with Cr2O3 nanoclusters, Sensors and Actuators B: Chemical, Vol. 309, pp. 127805DOI
64 
Sovizi M.R., Mirzakhani S., 2020, A chemiresistor sensor modified with lanthanum oxide nanoparticles as a highly sensitive and selective sensor for dimethylamine at room temperature, New Journal of Chemistry, Vol. 44, pp. 4927-4934DOI
65 
Kwak C.-H., Woo H.-S., Lee J.-H., 2014, Selective trimethylamine sensors using Cr2O3-decorated SnO2 nanowires, Sensors and Actuators B: Chemical, Vol. 204, pp. 231-238DOI
66 
Ólafsdóttir E.M. G., Jónsson E. H., 1997, Rapid Gas Sensor Measurements To Determine Spoilage of Capelin (Mallotus villosus), J. Agric. Food Chem., pp. 2654-2659DOI
67 
Olafsdóttir G., Martinsdóttir E., Oehlenschläger J., Dalgaard P., Jensen B., Undeland I., Mackie I.M., Henehan G., Nielsen J., Nilsen H., 1997, Methods to evaluate fish freshness in research and industry, Trends in Food Science & Technology, Vol. 8, pp. 258-265DOI
68 
Zhu P., Wang Y., Ma P., Li S., Fan F., Cui K., Ge S., Zhang Y., Yu J., 2019, Low-Power and High-Performance Trimethylamine Gas Sensor Based on n-n Heterojunction Microbelts of Perylene Diimide/CdS, Analytical Chemistry, Vol. 91, pp. 5591-5598DOI
69 
Tonezzer M., Thai N.X., Gasperi F., Van Duy N., Biasioli F., 2021, Quantitative Assessment of Trout Fish Spoilage with a Single Nanowire Gas Sensor in a Thermal Gradient, Nanomaterials, Vol. 11, pp. 1604DOI
70 
Shantini D., Nainggolan I., Nasution T.I., Derman M.N., Mustaffa R., Abd Wahab N.Z., 2016, Hexanal Gas Detection Using Chitosan Biopolymer as Sensing Material at Room Temperature, Journal of Sensors, Vol. 2016, pp. 1-7DOI
71 
Guo X., Ding Y., Liang C., Du B., Zhao C., Tan Y., Shi Y., Zhang P., Yang X., He Y., 2022, Humidity-activated H2S sensor based on SnSe2/WO3 composite for evaluating the spoilage of eggs at room temperature, Sensors and Actuators B: Chemical, Vol. 357DOI
72 
Lozano J., Santos J.P., Gutiérrez J., Horrillo M.C., 2007, Comparative study of sampling systems combined with gas sensors for wine discrimination, Sensors and Actuators B: Chemical, Vol. 126, pp. 616-623DOI
73 
Lerma-García M.J., Cerretani L., Cevoli C., Simó-Alfonso E.F., Bendini A., Toschi T.G., 2010, Use of electronic nose to determine defect percentage in oils. Comparison with sensory panel results, Sensors and Actuators B: Chemical, Vol. 147, pp. 283-289DOI
74 
Ghasemi-Varnamkhasti M., Amiri Z.S., Tohidi M., Dowlati M., Mohtasebi S.S., Silva A.C., Fernandes D.D.S., Araujo M.C.U., 2018, Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools, Talanta, Vol. 176, pp. 221-226DOI
75 
Pirsa S., Tağı Ş., Rezaei M., 2021, Detection of Authentication of Milk by Nanostructure Conducting Polypyrrole-ZnO, Journal of Electronic Materials, Vol. 50, pp. 3406-3414DOI