Mobile QR Code QR CODE

References

1 
Wu W., et al , June 2018, A methodology to improve linearity of analog RRAM for neuromorphic computing, Symposium on VLSI Technology, art. No. 8510690, pp. 103-104DOI
2 
Lin P., et al , 2020, Three-dimensional memristor circuits as complex neural networks, Nature Electronics 3, pp. 225-232DOI
3 
Ambrogio S., et al , 2018, Equivalent-accuracy accelerated neural-network training using analogue memory, Nature, Vol. 558, pp. 60-67DOI
4 
Guo X., et al , 2017, Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology, IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, pp. 6.5.1-6.5.4.DOI
5 
Wang P., et al , 2019, Three-dimensional NAND Flash for vector-matrix multiplication, IEEE Trans. VLSI Systems, Vol. 27, No. 4, pp. 988-991DOI
6 
Lue H. -T., et al , 2019, Optimal design methods to transform 3D NAND Flash into a high-density, high-bandwidth and low-power nonvolatile computing in memory (nvCIM) accelerator for deep-learning neural networks (DNN), IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, pp. 38.1.1-38.1.4.DOI
7 
Shim W., et al , Oct. 2020, Architectural design of 3D NAND Flash based compute-in-memory for inference engine, ACM/IEEE International Symposium on Memory Systems (MEMSYS), pp. 77-85DOI
8 
Shim W., et al , Feb. 2021, Technological Design of 3D NAND-Based Compute-in-Memory Architecture for GB-Scale Deep Neural Network, in IEEE Electron Device Letters, Vol. 42, No. 2, pp. 160-163DOI
9 
Resnati D., et al , Aug. 2018, Characterization and Modeling of Temperature Effects in 3-D NAND Flash Arrays-Part I: Polysilicon-Induced Variability, IEEE Transactions on Electron Devices, Vol. 65, No. 8, pp. 3199-3206DOI