Mobile QR Code QR CODE

References

1 
Arias-Purdue A., Rowell P., Urteaga M., et al. , 2020, A 120-mW, Q-band InP HBT Power Amplifier with 46% Peak PAE, 2020 IEEE/MTT-S International Microwave Symposium (IMS), pp. 1291-1294DOI
2 
Liu Z., Sharma T., Chappidi C. R., et al. , 2021, A 42-62 GHz Transformer-Based Broadband mm-Wave InP PA With Second-Harmonic Waveform Engineering and Enhanced Linearity, IEEE Trans. Microw. Theory Tech., Vol. 69, No. 1, pp. 756-773DOI
3 
Zhang Y., Chen Y., Li Y., et al. , 2020., Modeling technology of InP heterojunction bipolar transistor for THz integrated circuit, Int. J. Numer. Model. Electron. Netw. Devices Fields, Vol. 33, No. 3, pp. e2579DOI
4 
Jin X., Müller M., Sakalas P., et al. , 2021, Advanced SiGe:C HBTs at Cryogenic Temperatures and Their Compact Modeling With Temperature Scaling, IEEE J. Explor. Solid-State Comput. Devices Circuits, Vol. 7, No. 2, pp. 175-183DOI
5 
Nidhin K., Pande S., Yadav S., et al. , 2020, An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition, IEEE Trans. Electron Devices, Vol. 67, No. 11, pp. 5069-5075DOI
6 
Sun X., Zhang X., Sun Y., 2020., Thermal characterization and design of GaAs HBT with heat source drifting effects under large current operating condition, Microelectron. J., Vol. 100, pp. 104779DOI
7 
Zhang A., Gao J., 2021, An Improved Nonlinear Model for Millimeter-Wave InP HBT Including DC/AC Dispersion Effects, IEEE Microw. Wirel. Compon. Lett., Vol. 31, No. 5, pp. 465-468DOI
8 
Sun Y., Liu Z., Li X., et al. , 2019, Distributed Small-Signal Equivalent Circuit Model and Parameter Extraction for SiGe HBT, IEEE Access, Vol. 7, pp. 5865-5873DOI
9 
Johansen T. K., Leblanc R., Poulain J., et al. , 2016, Direct Extraction of InP/GaAsSb/InP DHBT Equivalent-Circuit Elements From S-Parameters Measured at Cut-Off and Normal Bias Conditions, IEEE Trans. Microw. Theory Tech., Vol. 64, No. 1, pp. 115-124DOI
10 
Zhang J., Liu M., Wang J., et al. , 2021, An analytic method for parameter extraction of InP HBTs small-signal model, Circuit WorldDOI
11 
Qi J., Lyu H., Zhang Y., et al. , 2020, An improved direct extraction method for InP HBT small-signal model, J. Infrared Millim. Waves, Vol. 39, No. 11, pp. 295-299Google Search
12 
Zhang A., Gao J., 2018, A new method for determination of PAD capacitances for GaAs HBTs based on scalable small signal equivalent circuit model, Solid-State Electron., Vol. 150, No. DEC., pp. 45-50DOI
13 
Zhang J., Zhang L., Liu M., et al. , 2020, Systematic and Rigorous Extraction Procedure for InP HBT π-type Small-signal Model Parameters, J. Semicond. Technol. Sci., Vol. 20, No. 4, pp. 372-380DOI
14 
Hu C., Horng J. B., Tseng H. C., 2011, Figures-of-merit genetic extraction for InGaAs lasers, SiGe low-noise amplifiers, ZnSe/Ge/GaAs HBTs, Int. J. Numer. Model. Electron. Netw. Devices FieldsDOI
15 
Munshi K., Vempada P., Prasad S., et al. , 2003, Small signal and large signal modeling of HBT’s using neural networks, 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service TELSIKS 2003., Vol. 2, pp. 565-568DOI
16 
Wu H., Cheng Q., Yan S., et al. , 2015, Transistor Model Building for a Microwave Power Heterojunction Bipolar Transistor, IEEE Microw. Mag., Vol. 16, No. 2, pp. 85-92DOI
17 
Han X., Tan H., Liu W., et al. , 2022., Modeling of heterojunction bipolar transistors based on novel Wiener-type dynamic neural network, Int. J. RF Microw. Comput.-Aided Eng., Vol. 32, No. 4, pp. e23072DOI
18 
Jarndal A., Husain S., Hashmi M., et al. , 2021, Large-Signal Modeling of GaN HEMTs Using Hybrid GA-ANN, PSO-SVR, GPR-Based Approaches, IEEE J. Electron Devices Soc., Vol. 9, pp. 195-208DOI
19 
Hussein A. S., Jarndal A. H., 2018, Reliable Hybrid Small-Signal Modeling of GaN HEMTs Based on Particle-Swarm-Optimization, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 37, No. 9, pp. 1816-1824DOI
20 
Huang G. B., 2014, An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels, Cogn. Comput., Vol. 6, No. 3, pp. 376-390DOI
21 
Anupam S., Pani P., 2020, Flood forecasting using a hybrid extreme learning machine-particle swarm optimization algorithm (ELM-PSO) model, Model. Earth Syst. Environ., Vol. 6, No. 4, pp. 1-7DOI
22 
Yao L., Xu S., Xiao Y., et al. , 2022, Fault Identification of Lithium-Ion Battery Pack for Electric Vehicle Based on GA Optimized ELM Neural Network, IEEE Access, Vol. 10, pp. 15007-15022DOI
23 
Melchor-Leal J. M., Cantoral-Ceballos J. A., 2021, Force profile characterization for thermostatic bimetal using extreme learning machine, IEEE Lat. Am. Trans., Vol. 19, No. 02, pp. 208-216DOI
24 
Tahir G. A., Chu K. L., 2020, An Open-Ended Continual Learning for Food Recognition Using Class Incremental Extreme Learning Machines, IEEE AccessDOI
25 
Sheinman B., Wasige E., Rudolph M., et al. , 2002, A peeling algorithm for extraction of the HBT small-signal equivalent circuit, IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, pp. 2804-2810DOI
26 
Bataller-Mompeán M., Martínez-Villena J. M., Rosado-Muñoz A., et al. , 2016, Support Tool for the Combined Software/Hardware Design of On-Chip ELM Training for SLFF Neural Networks, IEEE Trans. Ind. Inform., Vol. 12, No. 3, pp. 1114-1123DOI
27 
Wang Y., Cao F., Yuan Y., 2011, A study on effectiveness of extreme learning machine, Neurocomputing, Vol. 74, No. 16, pp. 2483-2490DOI
28 
Gu R., Shen F., Huang Y., et al. , 2013, A parallel computing platform for training large scale neural networks, 2013 IEEE International Conference on Big Data, pp. 376-384DOI
29 
Liu X., Lin S., Fang J., et al. , 2015, Is Extreme Learning Machine Feasible? A Theoretical Assessment (Part I), IEEE Trans. Neural Netw. Learn. Syst., Vol. 26, No. 1, pp. 7-20DOI
30 
Eberhart R., Kennedy J., 1995, A new optimizer using particle swarm theory, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43DOI
31 
Cai W., Yang J., Yu Y., et al. , 2020, PSO-ELM: A Hybrid Learning Model for Short-Term Traffic Flow Forecasting, IEEE Access, Vol. 8, pp. 6505-6514DOI
32 
Wang S., Zhang J., Liu M., et al. , 2022, Large-Signal Behavior Modeling of GaN P-HEMT Based on GA-ELM Neural Network, Circuits Syst. Signal Process., Vol. 41, No. 4, pp. 1834-1847DOI
33 
Lu H. Y., Cheng W., Chen G., et al. , 2013, Direct Extraction Method of InP HBT Small-Signal Model, Applied Mechanics and Materials, vol. 347-350, Trans Tech Publications Ltd, pp. 1621-1624DOI
34 
Gao J. J., Li X. P., Wang H., et al , 2006, An approach to determine small-signal model parameters for InP-based heterojunction bipolar transistors, IEEE Transactions on Semiconductor Manufacturing, Vol. 19, No. 1, pp. 138-145DOI
35 
Bousnina S., Mandeville P., Kouki A. B., et al , 2002, Direct parameter-extraction method for HBT small-signal model, in IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 2, pp. 529-536DOI