Mobile QR Code QR CODE

References

1 
T. Kamiya et al., “Present status of amorphous In-Ga-Zn-O thin-film transistors,” Science and Technology of Advanced Materials, Vol. 11, No. 4, Nov., 2010.DOI
2 
A. Nathan et al., “Transparent oxide semicon-ductors for advanced display applications,” Information Display, Vol. 29, No. 1, pp. 6-11, Jan., 2013.DOI
3 
T. Kamiya et al., “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping,” Journal of Display Technology, Vol. 5, No. 7, pp. 273-288, Dec., 2009.DOI
4 
K. Nomura et al., “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, Vol. 432, No. 7016, pp. 488-492, Nov., 2004.DOI
5 
K. Nomura et al., “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Japanese Journal of Applied Physics, Vol. 45, No. 5B, pp. 4303-4308, May, 2006.DOI
6 
H. Hsieh et al., “Development of IGZO TFTs and their applications to next-generation flat-panel displays,” Journal of Information Display, Vol. 11, No. 4, pp. 160-164, Dec., 2010.DOI
7 
H. N. Lee et al., “Oxide TFT with multilayer gate insulator for backplane of AMOLED device,” Journal of the Society for Information Display, Vol. 16, No. 2, pp. 265-272, Feb., 2008.DOI
8 
J. Park et al., “Effect of positive bias stress on the back-gate voltage-modulated threshold voltage in double-gate amorphous InGaZnO thin-film transistors,” IEEE Electron Device Letters, Vol. 43, No. 11, pp. 1878-1881, Nov., 2022.DOI
9 
A. Sodhani et al., “Design of threshold voltage insensitive pixel driver circuitry using a-IGZO TFT for AMOLED displays,” Microelectronics Journal, Vol. 101, pp. 104819, Jul., 2020.DOI
10 
A. Sodhani et al., “Design of threshold voltage insensitive pixel driver circuitry using a-IGZO TFT for AMOLED displays,” Microelectronics Journal, Vol. 101, pp. 104819, Jul., 2020.DOI
11 
H. Yang et al., “Self-Heating Stress-Induced Severe Humps in Transfer Characteristics of Amorphous InGaZnO Thin-Film Transistors,” IEEE Transactions on Electron Devices, Vol. 68, No. 12, pp. 6197-3201, Dec., 2021.DOI
12 
S. Choi et al., “Effect of oxygen content on current stress-induced instability in bottom-gate amorphous InGaZnO thin-film transistors,” Materials, Vol. 12, No. 19, pp. 3149, Sep., 2019.DOI
13 
M. Mativenga et al., “High current stress effects in amorphous-InGaZnO4 thin-film transistors,” Applied Physics Letters, Vol. 102, No. 2, pp. 023503, Dec., 2013.DOI
14 
W. S. Kim et al., “Abnormal behavior with hump characteristics in current stressed a-InGaZnO thin film transistors,” Solid-State Electronics, Vol. 137, pp. 22-28, Nov., 2017.DOI
15 
Y. S. Lee et al., “Oxygen flow effects on electrical properties, stability, and density of states of amorphous In-Ga-Zn-O thin-film transistors,” Japanese Journal of Applied Physics, Vol. 53, No. 12, pp. 121101, Nov., 2014.DOI
16 
S. Choi et al., “Effect of channel widths on negative shift of threshold voltage, including stress-induced hump phenomenon in InGaZnO thin-film transistors under high-gate and drain bias stress,” Applied Physics Letters, Vol. 100, No. 4, pp. 043503, Jan., 2012.DOI
17 
T. Hsieh et al., “Investigation of gate-bias stress and hot-carrier stress-induced instability of InGaZnO thin-film transistors under different environments,” Surface and Coatings Technology, Vol. 231, pp. 478-481, Sep., 2013.DOI
18 
C. Kuo et al., “Abnormal Subthreshold Swing Decrease in a-InGaZnO Thin-Film Transistor After Self-Heating Stress,” IEEE Transactions on Electron Devices, pp. 1-5, Nov., 2022.DOI
19 
S. W. Lee et al., “Abnormal Output Characteristics of p-Type Low Temperature Polycrystalline Silicon Thin Film Transistor Fabricated on Polyimide Substrate,” IEEE Journal of the Electron Devices Society, Vol. 4, No. 1, pp. 7-10, Jan., 2016.DOI
20 
H. R. Yu et al., “Degradation on the Current Saturation of Output Characteristics in Amorphous InGaZnO Thin-Film Transistors,” IEEE Journal of the Electron Devices Society, Vol. 65, No. 8, pp. 3243-3249, Aug., 2018.DOI
21 
T. Chen et al., “Self-heating enhanced charge trapping effect for InGaZnO thin film transistor,” Applied Physics Letters, Vol. 101, No. 4, pp. 042101, Jul., 2012.DOI
22 
T. Hsieh et al., “Self-heating-effect-induced degradation behaviors in a-InGaZnO thin-film transistors,” IEEE Electron Device Letters, Vol. 34, No. 1, pp. 63-65, Nov., 2012.DOI
23 
H. Li et al., “Oxygen vacancies and hydrogen in amorphous In-Ga-Zn-O and ZnO,” Physical Review Materials, Vol. 2, No. 7, pp. 074601, Jul., 2018.DOI
24 
C. Y. Jeong et al., “A study on the degradation mechanism of InGaZnO thin-film transistors under simultaneous gate and drain bias stresses based on the electronic trap characterization,” Semiconductor Science and Technology, Vol. 29, No. 4, pp. 045023, Jul., 2014.DOI
25 
T. Chen et al., “Self-heating enhanced charge trapping effect for InGaZnO thin film transistor,” Applied Physics Letters, Vol. 101, No. 4, pp. 042101, Feb., 2012.DOI
26 
K. Liu et al., “Investigation of channel width-dependent threshold voltage variation in a-InGaZnO thin-film transistors,” Applied Physics Letters, Vol. 104, No. 13, pp. 133503, Feb., 2014DOI