Mobile QR Code QR CODE

References

1 
J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85-117, Jan. 2015.DOI
2 
T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual features through spike timing dependent plasticity,” PLoS Comput. Biol., vol. 3, no. 2, pp. 1-11, Feb. 2007.DOI
3 
M. Kwon, M. Baek, S. Hwang, K. Park, T. Jang, T. Kim, J. Lee, S. Cho, and B.-G. Park, “Integrate-and-fire neuron circuit using positive feedback field effect transistor for low power operation,” J. Appl. Phys., vol. 124, no. 15, pp. 152107-01-152107-07, Sep. 2018.DOI
4 
W. M. Knag, C-H. Kim, S. Lee, and S. Y. Woo, “A Spiking Neural Network with a Global Self-Controller for Unsupervised Learning Based on Spike-Timing-Dependent Plasticity Using Flash Memory Synaptic Devices,” Int. Joint Conf. on Neural Networks (IJCNN), pp. 1-7, Jul. 2019.DOI
5 
Y. J. Lee, et al., “Low power real time electronic neuron VLSI design using subthreshold technique,” Proc. IEEE Int. Symp. Circuits Syst., vol. 4, p. IV-744, May 2004.DOI
6 
D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: materials, devices and applications,” Nanotechnol., vol. 24, no. 38, pp. 382001-1-382001-22, Sep. 2013.DOI
7 
S. Cho, “Volatile and Nonvolatile Memory Devices for Neuromorphic and Processing-in-Memory Applications,” J. Semcond. Technol. Sci., vol. 22, no. 1, pp. 30-46, Feb. 2022.DOI
8 
D. J. Jang, H. Ryu, H. Cha, Na-Y. Lee, Y. Kim, M.-W. Kwon, “Synaptic Device based on Resistive Switching Memory using Single-walled Carbon Nanotubes,” J. Semcond. Technol. Sci., vol. 22, no. 05, pp. 346-352, Oct. 2022.DOI
9 
K. U. Mohanan, S. Cho, and, B.-G. Park, “Optimization of the structural complexity of artificial neural network for hardware-driven neuromorphic computing application,” Appl. Intell., vol. 53, no. 6, pp. 6288-6306, Mar. 2023.DOI
10 
G. Dellaferrera, S. Woźniak, G. Indiveri, A. Pantazi, and E. Eleftherious, “Introducing principles of synaptic integration in the optimization of deep neural networks,” Nat. Commun., vol. 13, 1885-1-1885-14, Apr. 2022.DOI
11 
S. Sagar, K. U. Mohanan, S. Cho, L. A. Majewski, and B. C. Das, “Emulation of synaptic functions with low voltage organic memtransistor for hardware oriented neuromorphic computing,” Sci. Rep., vol. 12, 3808-1-3808-12, Mar. 2022.DOI
12 
W. M. Knag, C-H. Kim, S. Lee, and S. Y. Woo, “A Spiking Neural Network with a Global Self-Controller for Unsupervised Learning Based on Spike-Timing-Dependent Plasticity Using Flash Memory Synaptic Devices,” Int. Joint Conf. on Neural Networks (IJCNN), pp. 1-7, Jul. 2019.DOI
13 
A. N. Burkitt, “A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input,” Biol. Cybern., vol. 95, no. 1, pp. 1-19, Jul. 2006.DOI
14 
G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity,” IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 211-221, Jan. 2006.DOI
15 
G. Indiveri and S.-C. Liu, “Memory and information processing in neuromorphic systems,” Proc. IEEE, vol. 103, no. 8, pp. 1379-1397, Aug. 2015.DOI
16 
T. N. Sainath, A. R. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep convolutional neural networks for LVCSR,” IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 8614-8618, May 2013.DOI
17 
M. Mahowald and R. Douglas, “A silicon neuron,” Nature, vol. 354, no. 6354, pp. 515-518, Dec. 1991.DOI
18 
W. Maass, “Networks of spiking neurons: The third generation of neural network models,” Neural Netw., vol. 10, no. 9, pp. 1659-1671, Dec. 1997.DOI
19 
G. Indiveri, “A low-power adaptive integrate-and-fire neuron circuit,” Proc. of the 2003 Int. Symposium on Circuits and Systems (ISCAS), vol. 4, pp. IV-IV May 2003.DOI
20 
R. D. B. Dayan, E. Chicca, and G. Indiveri, “Characterizing the Firing Properties of an Adaptive Analog VLSI Neuron,” Bio. Inspired Approaches to Adv. Info. Tech., pp. 189-200, Jan. 2004.DOI
21 
E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans. Neural Netw., vol. 14, no. 6, pp. 1569-1572, Nov. 2003.DOI
22 
W. M. Knag, C.-H. Kim, S. Lee, and S. Y. Woo, “A Spiking Neural Network with a Global Self-Controller for Unsupervised Learning Based on Spike-Timing-Dependent Plasticity Using Flash Memory Synaptic Devices,” Int. Joint Conf. on Neural Networks (IJCNN), pp. 1-7, Jul. 2019.DOI
23 
J. Zhu, T. Zhang, Y. Yang, R. Huang, “A comprehensive review on emerging artificial neuromorphic devices,” Appl. Phys. Rev., vol. 7, no. 1, pp. 011312-1-011312-17, Feb. 2020.DOI
24 
J. H. B. Wijekoon and P. Dudek, “Compact silicon neuron circuit with spiking and bursting behaviour,” Neural Netw., vol. 21, no. 2-3, pp. 524-534, Mar. 2008.DOI
25 
X. Chen, T. Yajima, I. H. Inoue, and T. Iizuka, “An ultra-compact leaky integrate-and-fire neuron with long and tunable time constant utilizing pseudo resistors for spiking neural networks,” Jpn. J. Appl. Phys., vol. 61, no. SC, pp. SC1050-1-SC1050-9, May 2022.DOI