Mobile QR Code QR CODE

References

1 
Khwa, W.-S., et al., “Emerging NVM circuit techniques and implementations for energy-efficient systems, in Beyond-CMOS Technologies for Next Generation Computer Design”. Springer, 2019, pp. 85-132.DOI
2 
Meena, J.S., et al., “Overview of emerging non-volatile memory technologies.” Nanoscale research letters, Sep. 2014, pp. 1-33.DOI
3 
Niu, D., et al. “Low power multi-level-cell resistive memory design with incomplete data mapping.” in IEEE International Conference on Computer Design (ICCD), Nov. 2013, pp. 131-137.DOI
4 
Chang, M.-F., et al., “A low-voltage bulk-drain-driven read scheme for sub-0.5 V 4 Mb 65 nm logic-process compatible embedded resistive RAM (ReRAM) macro.” IEEE J. Solid-State Circuits, vol. 48, pp. 2250-2259, Sep. 2013.DOI
5 
Chang, M.-F., et al., “Low VDDmin Swing-Sample-and-Couple Sense Amplifier and Energy-Efficient Self-Boost-Write-Termination Scheme for Embedded ReRAM Macros Against Resistance and Switch-Time Variations”. IEEE J, of Solid-State Circuits, vol. 50, pp. 2786-2795, Sep. 2015.DOI
6 
Lee, A., et al., “A ReRAM-based non-volatile flip-flop with self-write-termination scheme for frequent-off fast-wake-up non-volatile processors.” IEEE J. Solid-State Circuits, vol. 52, pp. 2194-2207, Aug. 2017.DOI
7 
G. Murali, X. Sun, S. Yu and S. K. Lim, "Heterogeneous Mixed-Signal Monolithic 3-D In-Memory Computing Using Resistive RAM," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 2, pp. 386-396, Feb. 2021,DOI
8 
Wei, Song-Tao, et al. "Trends and challenges in the circuit and macro of RRAM-based computing-in-memory systems." Chip, vol. 1, no. 1, pp. 1-11, Mar 2022.DOI
9 
Y. Lu, V. L. Le and T. T.-H. Kim, “A 184-μW error-tolerant real-time hand gesture recognition system with hybrid tiny classifiers utilizing edge CNN,” IEEE J. of Solid-State Circuits, vol. 58, no. 2, pp. 530-542, Feb. 2023.DOI
10 
Y. Lu, Z. Li, Y. Chen and T. T.-H. Kim, “A 181µW real-time 3-D hand gesture recognition system based on bi-directional convolution and computing-efficient feature clustering,” in IEEE Custom Integrated Circuits Conference, Apr. 2022, pp. 1-2.DOI
11 
Lee, H., et al. “Evidence and solution of over-RESET problem for HfO x based resistive memory with sub-ns switching speed and high endurance”. IEEE International Electron Devices Meeting (IEDM). Dec. 2010, pp. 17-19.DOI
12 
Gao, B., et al. “Oxide-based RRAM switching mechanism: A new ion-transport-recombination model”. in IEEE International Electron Devices Meeting(IEMD). Dec. 2008, pp. 1-4.DOI
13 
Kim, J., et al., “A novel sensing circuit for deep submicron spin transfer torque MRAM (STT-MRAM)”. IEEE Transactions on very large scale integration (VLSI) systems, vol. 20, no 1, pp. 181-186, Jan. 2012.DOI
14 
Na, T., et al., “A double-sensing-margin offset-canceling dual-stage sensing circuit for resistive non-volatile memory”. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 12, pp. 1109-1113, Dec. 2015.DOI
15 
Chang, M.-F, et al,. ”An offset-tolerant current-sampling-based sense amplifier fir Sub-100 nA-cell-current non-volatile memory”. IEEE J. Solid-State Circuit, pp. 206-208, Feb. 2011.DOI
16 
Xue, C.-X., et al., “Embedded 1-Mb ReRAM-based computing-in-memory macro with multibit input and weight for CNN-based AI edge processors”. IEEE J. of Solid-State Circuits, vol. 55, no. 1, pp. 203-215, Jan. 2019.DOI
17 
KIM, Chankyung, et al. “7.4 A covalent-bonded cross-coupled current-mode sense amplifier for STT-MRAM with 1T1MTJ common source-line structure array”. In: 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers. IEEE, Feb. 2015. pp. 1-3.DOI
18 
Schemes, R., et al. "A high-Speed 7. 2-ns read-Write random access 4-Mb embedded resistive RAM (ReRAM) macro." IEEE J. of Solid-State Circuits, vol. 48, no. 3, pp. 878-891, March. 2013.DOI
19 
L. Lu, et al. ReRAM device and circuit co-design challenges in nano-scale CMOS technology. In IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE, Dec. 2020. pp. 213-216.DOI
20 
Y. Chen, L. Lu, B. Kim, and T. T.-H. Kim, “Reconfigurable 2T2R ReRAM architecture for versatile data storage and computing in memory,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 12, Dec. 2020, pp. 2636-2649.DOI
21 
Yang, J. A., et al.” A 14nm-FinFET 1Mb Embedded 1T1R RRAM with a 0.022µm2 Cell Size Using Self-Adaptive Delayed Termination and Multi-Cell Reference," IEEE International Solid- State Circuits Conference (ISSCC), Feb. 2021, pp. 336-338.URL
22 
Y-C. Chiu., et al.” A 22nm 4Mb STT-MRAM Data-Encrypted Near-Memory Computation Macro with a 192GB/s Read-and-Decryption Bandwidth and 25.1-55.1TOPS/W 8b MAC for AI Operations," IEEE International Solid- State Circuits Conference (ISSCC), Feb. 2022, pp. 178-180.DOI
23 
T. Shimoi et al., "A 22nm 32Mb Embedded STT-MRAM Macro Achieving 5.9ns Random Read Access and 5.8MB/s Write Throughput at up to Tj of 150 °C," IEEE Trans. Very Large Scale Integr. (VLSI) Systems., June. 2022, pp. 134-135.DOI
24 
Y. -C. Chiu., et al. "A 22nm 8Mb STT-MRAM Near-Memory-Computing Macro with 8b-Precision and 46.4-160.1TOPS/W for Edge-AI Devices," IEEE International Solid- State Circuits Conference (ISSCC), Feb. 2023, pp. 496-498.DOI