Mobile QR Code QR CODE

References

1 
A. Grimbergen, A. C. MettingVanRijn, A. P. Kuiper, R. H. Honsbeek, K. Speijer, and A. Peper, "D.C. rejection and deblocking in multichannel bioelectric recordings," Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society, 1995, pp. 1665-1666 vol. 2.DOI
2 
Raducanu, Bogdan & Yazicioglu, Refet & Mora Lopez, Carolina & Ballini, Marco & Putzeys, Jan & Wang, Shiwei & Andrei, Alexandru & Rochus, Véronique & Welkenhuysen, Marleen & Helleputte, Nick & Musa, Silke & Puers, Robert & Kloosterman, Fabian & Van Hoof, Chris & Fiáth, Richárd & Ulbert, István & Mitra, Srinjoy. (2017). Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites. Sensors. 17. 2388. 10.3390/s17102388.DOI
3 
Destexhe, A., Bédard, C. (2020). Local Field Potentials: LFP. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY.URL
4 
Najafi, Khalil and Kensall D. Wise. “An implantable multielectrode array with on-chip signal processing, “IEEE J. Solid-State Circuits ,vol. SC-21, pp. 1035-1044, Dec. 1986.DOI
5 
M. G. Dorman, M. A. Priebe and J. D. Meindl, "A monolithic signal processor for a neurophysiological telemetry system," in IEEE Journal of Solid-State Circuits, vol. 20, no. 6, pp. 1185-1193, Dec. 1985.DOI
6 
A. Samiei and H. Hashemi, "A Chopper Stabilized, Current Feedback, Neural Recording Amplifier," in IEEE Solid-State Circuits Letters, vol. 2, no. 3, pp. 17-20, March 2019.DOI
7 
M. G. Dorman, M. A. Priebe and J. D. Meindl, "A monolithic signal processor for a neurophysiological telemetry system," in IEEE Journal of Solid-State Circuits, vol. 20, no. 6, pp. 1185-1193, Dec. 1985.DOI
8 
Seese TM, Hamasaki H, Saidel GM, Davies CR. Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating. Lab Invest. 1998 Dec; 78(12): 1553-62. PMID: 9881955.URL
9 
M. Guermandi, R. Cardu, E. Franchi Scarselli and R. Guerrieri, "Active Electrode I.C. for EEG and Electrical Impedance Tomography With Continuous Monitoring of Contact Impedance," in IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 1, pp. 21-33, Feb. 2015.DOI
10 
F. Zhang, J. Holleman and B. P. Otis, "Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications," in IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 4, pp. 344-355, Aug. 2012.DOI
11 
M. S. J. Steyaert and W. M. C. Sansen, "A micropower low-noise monolithic instrumentation amplifier for medical purposes," in IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 1163-1168, Dec. 1987.DOI
12 
C. -J. Lee and J. -I. Song, "A Chopper Stabilized Current-Feedback Instrumentation Amplifier for EEG Acquisition Applications," in IEEE Access, vol. 7, pp. 11565-11569, 2019.DOI
13 
Li, YG., Haider, M.R. & Massoud, Y. A low-noise gain-tunable amplifier for large array biopotential recording systems. Analog Integr Circ Sig Process 74, 485-489 (2013).DOI
14 
R. R. Harrison and C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," in IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 958-965, June 2003.DOI
15 
M. Degrauwe, E. Vittoz and I. Verbauwhede, "A Micropower CMOS-Instrumentation Amplifier," in IEEE Journal of Solid-State Circuits, vol. 20, no. 3, pp. 805-807, June 1985.DOI
16 
Zhang, X., Wang, J. & Zhu, Z. A low-power low-noise amplifier with fully self-biased feedback loop structure for neural recording. Analog Integr Circ Sig Process 99, 199-208 (2019).DOI
17 
H. Chandrakumar and D. Marković, "An 80-mVpp Linear-Input Range, 1.6-G Input Impedance, Low-Power Chopper Amplifier for Closed-Loop Neural Recording That Is Tolerant to 650-mVpp Common-Mode Interference," in IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2811-2828, Nov. 2017.DOI
18 
Z. Zhou, "A Front-End Amplifier With Current Compensation Feedback Input Impedance Booster for Neural Signal Applications," in IEEE Access, vol. 8, pp. 178055-178062, 2020.DOI
19 
Z. Zhou and P. A. Warr, "A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring," in IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 6, pp. 1079-1086, Dec. 2016.DOI
20 
Kun-Hin To, Young-Bog Park, T. Rainer, W. Brown and M. W. Huang, "High frequency noise characteristics of R.F. MOSFETs in subthreshold region," IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 163-166, 2003.DOI
21 
Design of Analog CMOS Integrated Circuits (Behzad Razavi), McGraw-Hill, 2001.URL
22 
V. Chaturvedi and B. Amrutur, "A Low-Noise Low-Power Noise-Adaptive Neural Amplifier in 0.13um CMOS Technology," 2011 24th International Conference on VLSI Design, 2011, pp. 328-333.DOI
23 
Jespers, P. G. (2010). The gm/ID design methodology, a sizing tool for low-voltage analog CMOS circuits: The semi-empirical and compact model approaches. Dordrecht: Springer.URL
24 
Mehdi Ashayeri, Mohammad Yavari,”A front-end amplifier with tunable bandwidth and high value pseudo resistor for neural recording implants”, Microelectronics Journal Volume 119, 2022.DOI