Mobile QR Code QR CODE

References

1 
H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Cai, ``Metal-oxide RRAM,'' Proceedings of IEEE, vol. 100, no. 6, pp. 1951–1970, June 2012.DOI
2 
X. Guan, S. Yu, and H.-S. P. Wong, ``A SPICE compact model of metal oxide resistive switching memory with variations,'' IEEE Electron Device Letters, vol. 33, no. 10, pp. 1405-1407, 2012.DOI
3 
H. Li, P. Hunag, B. Gao, B. Chen, X. Liu, and J. Kang, ``A SPICE model of resistive random access memory for large-scale memory array simulation,'' IEEE Electron Device Letters, vol. 35, no. 2, pp. 211-213, 2013.DOI
4 
E. W. Lim and R. Ismail, ``Conduction mechanism of valence change resistive switching memory: A survey,'' Electronics, vol. 4, no. 3, pp. 586-613, 2015.DOI
5 
S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, ``Resistive switching characteristics of silicon nitride-based RRAM depending on top electrode metals,'' IEICE Transactions on Electronics, vol. 98, no. 5, pp. 429-433, 2015.DOI
6 
S. Lee, S. Seo, J. Lim, D. Jeon, B. Alimkhanuly, A. Kadyrov, and S. Lee, ``Metal oxide resistive memory with a deterministic conduction path,'' Journal of Materials Chemistry C, vol. 8, no. 11, pp. 3897-3903, 2020.DOI
7 
Y. S. Shin, K. Lee, Y. R. Lim, H. Lee, I. M. Lee, W. T. Kang, B. H. Lee, K. Kim, J. Heo, S. Park, Y. H. Lee, and W. J. Yu, ``Mobility engineering in vertical field effect transistors based on Van der Waals heterostructures,'' Advanced Materials, vol. 30, no. 9, 1704435, 2018.DOI
8 
M. A. Villena, J. B. Roldán, F. Jiménez-Molinos, E. Miranda, J. Suñé, and M. Lanza, “SIM2 RRAM: A physical model for RRAM devices simulation,” Journal of Computational Electronics, vol. 16, no. 4, pp. 1095-1120, 2017.DOI
9 
S. Zeyrek, S. Altindal, H. Yüzer, and M. M. Bülbül, “Current transport mechanism in Al/Si3N4/p-Si (MIS) Schottky barrier diodes at low temperatures,” Applied Surface Science, vol. 252, no. 8, pp. 2999-3010, 2006.DOI
10 
E. Vianello, F. Driussi, P. Palestri, A. Arreghini, D. Esseni, and L. Selmi, ``Impact of the charge transport in the conduction band on the retention of Si-nitride based memories,'' Proc. of ESSDERC 2008-38th European Solid-State Device Research Conference, IEEE, 2008.DOI
11 
T. Güngör and H. Tolunay, “Drift mobility measurements in a-SiNx: H,” Journal of Non-crystalline Solids, vol. 282, no. 2-3, pp. 197-202, 2001.DOI
12 
A. E. Kaloyeros, Y. Pan, J. Goff, and B. Arkles, ``Silicon nitride and silicon nitride-rich thin film technologies: State-of-the-art processing technologies, properties, and applications,'' ECS Journal of Solid State Science and Technology, vol. 9, no. 6, 063006, 2020.DOI
13 
V. A. Gritsenko, E. E. Meerson, and Y. N. Morokov, ``Thermally assisted hole tunneling at the Au- Si$_3$N$_4$ interface and the energy-band diagram of metal-nitride-oxide-semiconductor structures,'' Physical Revie B, vol. 57, no. 4, R2081, 1998.DOI
14 
J.-S. Lee, W.-H. Kim, I.-K. Oh, M.-K. Kim, G. Lee, C.-W. Lee, J. Park, C. Lansalot-Matras, W. Noh, and H. Kim, ``Atomic layer deposition of Y$_2$O$_3$ and yttrium-doped HfO$_2$ using a newly synthesized Y (iPrCp)$_2$(N-iPr-amd) precursor for a high permittivity gate dielectric,'' Applied Surface Science, vol. 297, pp. 16-21, 2014.DOI
15 
J. H. Sim, S. C. Song, P. D. Kirsch, C. D. Young, R. Choi, D. K. Kwong, B. H. Lee, and G. Bersuker, ``Effects of ALD HfO$_2$ thickness on charge trapping and mobility,'' Microelectronic Engineering, vol. 80, pp. 218-221, 2005.DOI
16 
P. Harishsenthil, J. Chandrasekaran, R. Marnadu, P. Balraju, and C. Mahendran, ``Influence of high dielectric HfO2 thin films on the electrical properties of Al/HfO$_2$/n-Si (MIS) structured Schottky barrier diodes,'' Physica B: Condensed Matter, vol. 594, 412336, 2020.DOI