Mobile QR Code QR CODE

References

[1]

H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Cai, “Metaloxide RRAM,” Proceedings of IEEE, vol. 100, no. 6, pp. 1951–1970, June 2012. [CrossRef]

[2]

X. Guan, S. Yu, and H.-S. P. Wong, “A SPICE compact model of metal oxide resistive switching memory with variations,” IEEE Electron Device Letters, vol. 33, no. 10, pp. 1405-1407, 2012. [CrossRef]

[3]

H. Li, P. Hunag, B. Gao, B. Chen, X. Liu, and J. Kang, “A SPICE model of resistive random access memory for large-scale memory array simulation,” IEEE Electron Device Letters, vol. 35, no. 2, pp. 211-213, 2013. [CrossRef]

[4]

E. W. Lim and R. Ismail, “Conduction mechanism of valence change resistive switching memory: A survey,” Electronics, vol. 4, no. 3, pp. 586-613, 2015. [CrossRef]

[5]

S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, “Resistive switching characteristics of silicon nitride-based RRAM depending on top electrode metals,” IEICE Transactions on Electronics, vol. 98, no. 5, pp. 429-433, 2015. [CrossRef]

[6]

S. Lee, S. Seo, J. Lim, D. Jeon, B. Alimkhanuly, A. Kadyrov, and S. Lee, “Metal oxide resistive memory with a deterministic conduction path,” Journal of Materials Chemistry C, vol. 8, no. 11, pp. 3897-3903, 2020. [CrossRef]

[7]

Y. S. Shin, K. Lee, Y. R. Lim, H. Lee, I. M. Lee, W. T. Kang, B. H. Lee, K. Kim, J. Heo, S. Park, Y. H. Lee, and W. J. Yu, “Mobility engineering in vertical field effect transistors based on Van derWaals heterostructures,” Advanced Materials, vol. 30, no. 9, 1704435, 2018. [CrossRef]

[8]

M. A. Villena, J. B. Roldán, F. Jiménez-Molinos, E. Miranda, J. Suñé, and M. Lanza, “SIM2 RRAM: A physical model for RRAM devices simulation,” Journal of Computational Electronics, vol. 16, no. 4, pp. 1095-1120, 2017. [CrossRef]

[9]

S. Zeyrek, S. Altindal, H. Yüzer, and M. M. Bülbül, “Current transport mechanism in Al/Si3N4/p-Si (MIS) Schottky barrier diodes at low temperatures,” Applied Surface Science, vol. 252, no. 8, pp. 2999-3010, 2006. [CrossRef]

[10]

E. Vianello, F. Driussi, P. Palestri, A. Arreghini, D. Esseni, and L. Selmi, “Impact of the charge transport in the conduction band on the retention of Si-nitride based memories,” Proc. of ESSDERC 2008-38th European Solid-State Device Research Conference, IEEE, 2008. [CrossRef]

[11]

T. Güngör and H. Tolunay, “Drift mobility measurements in a-SiNx: H,” Journal of Non-crystalline Solids, vol. 282, no. 2-3, pp. 197-202, 2001. [CrossRef]

[12]

A. E. Kaloyeros, Y. Pan, J. Goff, and B. Arkles, “Silicon nitride and silicon nitride-rich thin film technologies: Stateof- the-art processing technologies, properties, and applications,” ECS Journal of Solid State Science and Technology, vol. 9, no. 6, 063006, 2020. [CrossRef]

[13]

V. A. Gritsenko, E. E. Meerson, and Y. N. Morokov, “Thermally assisted hole tunneling at the Au- $Si_3N_4$ interface and the energy-band diagram of metal-nitride-oxidesemiconductor structures,” Physical Revie B, vol. 57, no. 4, R2081, 1998. [CrossRef]

[14]

J.-S. Lee, W.-H. Kim, I.-K. Oh, M.-K. Kim, G. Lee, C.- W. Lee, J. Park, C. Lansalot-Matras, W. Noh, and H. Kim, “Atomic layer deposition of $Y_2O_3$ and yttrium-doped HfO2 using a newly synthesized Y (iPrCp)$_2$(N-iPr-amd) precursor for a high permittivity gate dielectric,” Applied Surface Science, vol. 297, pp. 16-21, 2014. [CrossRef]

[15]

J. H. Sim, S. C. Song, P. D. Kirsch, C. D. Young, R. Choi, D. K. Kwong, B. H. Lee, and G. Bersuker, “Effects of ALD $HfO_2$ thickness on charge trapping and mobility,” Microelectronic Engineering, vol. 80, pp. 218-221, 2005. [CrossRef]

[16]

P. Harishsenthil, J. Chandrasekaran, R. Marnadu, P. Balraju, and C. Mahendran, “Influence of high dielectric HfO2 thin films on the electrical properties of Al/HfO2/n-Si (MIS) structured Schottky barrier diodes,” Physica B: Condensed Matter, vol. 594, 412336, 2020. [CrossRef]