Title |
A Study on Thermal Runaway Suppression Technology in Abnormal State for Energy Storage System(ESS) Using Lithium Secondary Battery |
Authors |
SangHo Park ; Julgi Kang ; Whanug Kim ; Hong-Woo Lim |
DOI |
http://doi.org/10.5207/JIEIE.2022.36.6.026 |
Keywords |
Energy storage system(ESS); ESS safety; Lithium ion battery; Thermal runaway; Thermal stability |
Abstract |
A lithium ion battery is an energy storage device that the electrical energy into chemical energy through a charging reaction and then uses electricity through a discharging reaction. Although this technology has been commercialized as a power source for portable electronic devices, its range of use is expanding from several tens of kWh to MWh-class power sources such as electric vehicles(EVs) and energy storage systems (ESS). Currently, it is widely used in battery energy storage systems (BESS) can be used for a variety of applications, including frequency regulation, demand response, integration of renewable energy, and microgrids, respectively. The ESS industry has rapidly expanded its supply through various support policies such as special electricity rate discounts(KEPCO) and renewable energy supply certificates(REC). Simultaneously with the expansion of ESS installation, a total of 29 fires have occurred since the first ESS fire in August 2017. Therefore, in this paper, the ignition mechanism of lithium-ion batteries was analyzed based on the current status of ESS fires in Korea and the results of the investigation. In addition, it is intended to present a method for securing cell-level safety by securing thermal runaway suppression technology by improving the thermal stability of the electrolyte and separator constituting the lithium-ion battery. |