Mobile QR Code QR CODE : Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

ISO Journal TitleJ Korean Inst. IIIum. Electr. Install. Eng.

  1. (Ph.D. course, School of Electrical Engineering, Dong-A University, Korea)
  2. (Master course, School of Electrical Engineering, Dong-A University, Korea)
  3. (Assoiciate Professor, Department of Electrical Engineering; Dong-A University, Korea)



Confusion matrix, Digital O&M, Fault diagnosis, Machine learning, Photovoltaic system

1. ์„œ ๋ก 

1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ

์—๋„ˆ์ง€์ „ํ™˜ ์ •์ฑ… ๋ฐ ESG(Environmental, Social, Gover -nance) ๊ฒฝ์˜ ๋ฐฉ์‹์˜ ํ™•์‚ฐ์— ๋”ฐ๋ผ ๊ตญ๋‚ด ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์‹œ์žฅ์€ ์ง€์†์ ์ธ ์ƒ์Šน์„ธ๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. Fig. 1์—์„œ์™€ ๊ฐ™์ด 2019๋…„์— ์•ฝ 8,960MW ๊ทœ๋ชจ์˜€๋˜ ๊ตญ๋‚ด ํƒœ์–‘๊ด‘ ๋ˆ„์  ์„ค์น˜ ์šฉ๋Ÿ‰์€ 2024๋…„ 26,035MW ๊ทœ๋ชจ๋กœ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค[1]. ์ด์— ๋”ฐ๋ผ ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์‹œ์Šคํ…œ์˜ ์šด์˜ ๋ฐ ์œ ์ง€ ๊ด€๋ฆฌ(Operation & Maintenance, O&M)์— ๋Œ€ํ•œ ๊ด€์‹ฌ๊ณผ ์ˆ˜์š” ๋˜ํ•œ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ํƒœ์–‘๊ด‘ O&M์€ ๋ฐœ์ „ ์‹œ์Šคํ…œ์˜ ํšจ์œจ์ ์ธ ์šด์˜๊ณผ ์ˆ˜๋ช… ์—ฐ์žฅ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๋ฉฐ, ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๋ชจ๋‹ˆํ„ฐ๋ง, ๊ณ ์žฅ ์ง„๋‹จ, ๊ทธ๋ฆฌ๊ณ  ์˜ˆ๋ฐฉ์  ์œ ์ง€๋ณด์ˆ˜ ๊ธฐ์ˆ ์„ ํฌํ•จํ•˜๋Š” ์ข…ํ•ฉ์ ์ธ ๊ด€๋ฆฌ ํ™œ๋™์„ ํฌํ•จํ•œ๋‹ค[1].

Fig. 1. Cumulative PV system capacity in Korea[1]

../../Resources/kiiee/JIEIE.2025.39.1.44/fig1.png

๊ตญ๋‚ด ํƒœ์–‘๊ด‘ O&M ์‹œ์žฅ์€ ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์‹œ์žฅ๊ณผ ํ•จ๊ป˜ ์„ฑ์žฅํ•˜์—ฌ, 2025๋…„ 4.2์กฐ์› ๊ทœ๋ชจ๋กœ ํ™•๋Œ€ ๋  ๊ฒƒ์œผ๋กœ ์ „๋ง๋œ๋‹ค[2]. ์ด๋Ÿฌํ•œ ๋ฐฐ๊ฒฝ์—๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ๊ณผ ๊ฒฝ์ œ์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ํšจ์œจ์ ์ธ ๊ด€๋ฆฌ ๊ธฐ์ˆ ์˜ ํ•„์š”์„ฑ์ด ์ž๋ฆฌํ•˜๊ณ  ์žˆ๋‹ค.

๋”๋ถˆ์–ด, ์ตœ๊ทผ ๋””์ง€ํ„ธ O&M ๊ธฐ์ˆ ๋กœ ์ฃผ๋ชฉ๋ฐ›๋Š” ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ๋Œ€๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋ถ„์„ ๊ธฐ๋ฒ•์€ ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์‹œ์Šคํ…œ์˜ ์œ ์ง€๊ด€๋ฆฌ ํšจ์œจ์„ฑ์„ ๋†’์ด๋Š” ๋ฐ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ๋‹ค. ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์‹œ์Šคํ…œ์—์„œ ์ˆ˜์ง‘๋˜๋Š” ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ, ๋ฐœ์ „ ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ, ๋ชจ๋“ˆ ์˜จ๋„, ์ „๋ฅ˜, ์ „์•• ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ์ •๋ณด๋Š” ๋จธ์‹ ๋Ÿฌ๋‹(machine learning) ๋ชจ๋ธ์— ์˜ํ•ด ํ•™์Šต๋˜์–ด ์‹œ์Šคํ…œ ์„ฑ๋Šฅ ๋ถ„์„๊ณผ ์ด์ƒ ํƒ์ง€, ๋ฐœ์ „๋Ÿ‰ ์˜ˆ์ธก ๋“ฑ์˜ ์ •๊ตํ•œ ์œ ์ง€๋ณด์ˆ˜ ์ „๋žต์„ ๋„์ถœํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋œ๋‹ค.

๋Œ€๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šต ๊ณผ์ •์„ ๊ฐ•ํ™”ํ•˜์—ฌ ๋” ๋†’์€ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ธฐ์ƒ ์กฐ๊ฑด ๋ณ€ํ™”์™€ ๋ฐœ์ „๋Ÿ‰ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•œ ๋ชจ๋ธ์€ ๋ฐœ์ „๋Ÿ‰ ๊ฐ์†Œ์˜ ์ฃผ์š” ์›์ธ์„ ์ง„๋‹จํ•˜๊ณ , ์ง€์†์ ์ธ ์Œ์˜ ๋ฌธ์ œ๋‚˜ ๋ชจ๋“ˆ ์†์ƒ ์—ฌ๋ถ€๋ฅผ ์กฐ๊ธฐ์— ๋ฐœ๊ฒฌํ•˜์—ฌ ์œ ์ง€๋ณด์ˆ˜ ์‹œ์ ์„ ์ตœ์ ํ™”ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์œ ์ง€๋ณด์ˆ˜ ๋น„์šฉ์„ ์ค„์ด๋Š” ๋™์‹œ์— ๋ฐœ์ „ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค.

๋จธ์‹ ๋Ÿฌ๋‹์„ ํ†ตํ•ด ๋ฐœ์ „ ์‹œ์Šคํ…œ์˜ ์ •์ƒ ์ƒํƒœ์™€ ์ด์ƒ ์ƒํƒœ๋ฅผ ์ž๋™์œผ๋กœ ๊ตฌ๋ถ„ํ•จ์œผ๋กœ์จ, ๊ธฐ์กด์˜ ํ˜„์žฅ ๊ฒ€์ฆ ์œ ์ง€๋ณด์ˆ˜ ๋ฐฉ์‹์—์„œ ์›๊ฒฉ ๋ชจ๋‹ˆํ„ฐ๋ง ์œ ์ง€๋ณด์ˆ˜ ๋ฐฉ์‹์œผ๋กœ ์ „ํ™˜์ด ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ˆ˜๋งŽ์€ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ์€ ์‹œ์Šคํ…œ์˜ ์ถœ๋ ฅ ์ €ํ•˜ ํŒจํ„ด์„ ํŒŒ์•…ํ•˜๊ณ , ๊ณ ์žฅ ๋ฐœ์ƒ ๊ฐ€๋Šฅ์„ฑ์„ ์ฆ‰์‹œ ๊ฒฝ๊ณ ํ•จ์œผ๋กœ์จ ์šด์˜ ํšจ์œจ์„ฑ๊ณผ ๋น ๋ฅธ ์‹œ์Šคํ…œ์˜ ๋ณต๊ตฌ ๋ฐฉ์‹์„ ๋™์‹œ์— ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค.

1.2 ์—ฐ๊ตฌ์˜ ๋ชฉ์ 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์˜ ๊ณ ์žฅ ์ง„๋‹จ์„ ์œ„ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์œผ๋กœ ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ(Random Forest), k-์ตœ๊ทผ์ ‘ ์ด์›ƒ(k-Nearest Neighbor, kNN), ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ(Naive Bayes) ๋ชจ๋ธ์„ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์˜ ํ•™์Šต๊ณผ ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์˜ ์ทจ๋“ ๋ฐฉ๋ฒ•์„ ์„ค๋ช…ํ•˜๊ณ , ์ •์ƒ/๊ณ ์žฅ ๋ฐ์ดํ„ฐ๋ฅผ 8๊ฐœ์˜ ํด๋ž˜์Šค๋กœ ๋ถ„๋ฅ˜ํ•œ๋‹ค. ๋˜ํ•œ, ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ˜ผ๋™ ํ–‰๋ ฌ ๋ฐ ๊ด€๋ จ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ , ๊ฐ ๋ชจ๋ธ์˜ ๋‹ค์ค‘ ํด๋ž˜์Šค ํ˜ผ๋™ ํ–‰๋ ฌ์„ ํ†ตํ•œ ํด๋ž˜์Šค๋ณ„ ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ํƒœ์–‘๊ด‘ ๋””์ง€ํ„ธ O&M์— ์ ํ•ฉํ•œ ๊ณ ์žฅ ์ง„๋‹จ ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์–ป์–ด์ง„ ์ตœ์ ์˜ ๋ชจ๋ธ์€ ์‹ค์ œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์‹œ์Šคํ…œ์˜ ๊ณ ์žฅ ์ง„๋‹จ์— ์ ์šฉํ•จ์œผ๋กœ์จ ๋ฐœ์ „ ์„ค๋น„์˜ ์•ˆ์ •์„ฑ์„ ๋†’์ด๊ณ  ์œ ์ง€๊ด€๋ฆฌ ๋น„์šฉ์„ ์ ˆ๊ฐํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์˜ ์žฅ๊ธฐ์ ์ธ ์šด์˜ ํšจ์šฉ์„ฑ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ๊ฒƒ์ด๋‹ค.

2. ์ด๋ก ์  ๊ณ ์ฐฐ

2.1 ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ

๋žœ๋คํฌ๋ ˆ์ŠคํŠธ๋Š” Breiman(2001)์ด ์ œ์•ˆํ•œ ์•™์ƒ๋ธ” ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ, ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๊ฒฐ์ •ํŠธ๋ฆฌ(Decision Tree)๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ๋†’์€ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๋Š” ๋ชจ๋ธ์ด๋‹ค. ๊ฐ ํŠธ๋ฆฌ๋Š” ๊ฐœ๋ณ„์ ์œผ๋กœ ํ•™์Šต๋˜๋ฉฐ, ์˜ˆ์ธก ๊ฒฐ๊ณผ๋Š” ๋‹ค์ˆ˜๊ฒฐ ์›์น™ ๋˜๋Š” ํ‰๊ท ์„ ํ†ตํ•ด ๊ฒฐํ•ฉ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ๋ฐ์ดํ„ฐ์˜ ๊ณผ์ ํ•ฉ(Overfitting)์„ ๋ฐฉ์ง€ํ•˜๊ณ , ๋ถ„๋ฅ˜(Classification) ๋ฌธ์ œ์™€ ํšŒ๊ท€(Regression) ๋ฌธ์ œ ๋ชจ๋‘์—์„œ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค[3].

๋žœ๋คํฌ๋ ˆ์ŠคํŠธ๋Š” ๋ฐฐ๊น…(Bootstrap Aggregating)๊ณผ ๋žœ๋ค ๋ณ€์ˆ˜ ์„ ํƒ(Random Feature Selection)์˜ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ฐœ๋…์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค. ๋ฐฐ๊น…์€ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๋ณต์› ์ถ”์ถœ(Bootstrap sampling)์„ ํ†ตํ•ด ์—ฌ๋Ÿฌ ์ƒ˜ํ”Œ์„ ์ƒ์„ฑํ•˜๊ณ , ๊ฐ ์ƒ˜ํ”Œ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋…๋ฆฝ์ ์ธ ํŠธ๋ฆฌ๋ฅผ ํ•™์Šตํ•˜๋Š” ๊ธฐ๋ฒ•์ด๋‹ค[3].

๋žœ๋ค ๋ณ€์ˆ˜ ์„ ํƒ์€ ๊ฐ ๋…ธ๋“œ์—์„œ ์ „์ฒด ๋ณ€์ˆ˜ ์ง‘ํ•ฉ ์ค‘ ์ผ๋ถ€๋ฅผ ๋ฌด์ž‘์œ„๋กœ ์„ ํƒํ•˜์—ฌ ์ตœ์ ์˜ ๋ถ„ํ• (Split)์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ํŠธ๋ฆฌ ๊ฐ„ ์ƒ๊ด€์„ฑ์„ ์ค„์ด๊ณ  ๋ชจ๋ธ์˜ ๋‹ค์–‘์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค[4, 5].

๋ถ„๋ฅ˜ ๋ฌธ์ œ์—์„œ ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ ์ตœ์ข… ์˜ˆ์ธก๊ฐ’์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค[5]:

(1)
$$ H(x)=\arg \max _Y \sum_{k=1}^K I\left(h_k(x)=Y\right) $$

์—ฌ๊ธฐ์„œ $H(x)$๋Š” ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ์˜ ์ตœ์ข… ์˜ˆ์ธก๊ฐ’, $h_{k}(x)$๋Š” ๋ฒˆ์งธ ํŠธ๋ฆฌ์˜ ์˜ˆ์ธก๊ฐ’, ๋Š” $I(x)$์ง€์‹œํ•จ์ˆ˜์ด๋‹ค. ์ด ์ˆ˜์‹์€ ๊ฐœ๋ณ„ ํŠธ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ํˆฌํ‘œ ๋ฐฉ์‹์œผ๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ์ตœ๋นˆ๊ฐ’์„ ์˜ˆ์ธกํ•˜๋Š” ๊ณผ์ •์„ ๋‚˜ํƒ€๋‚ธ๋‹ค[5].

์ด ๋•Œ ๊ฐ ํŠธ๋ฆฌ๋Š” ๋ณต์› ์ถ”์ถœ๋กœ ์ƒ์„ฑ๋œ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๋ฌด์ž‘์œ„๋กœ ์„ ํƒ๋œ ๋ณ€์ˆ˜๋“ค๋กœ ํ•™์Šต๋˜๋ฏ€๋กœ, ๋ฐ์ดํ„ฐ์˜ ์ผ๋ถ€ ์ด์ƒ์น˜๋‚˜ ๋…ธ์ด์ฆˆ์— ๋ฏผ๊ฐํ•˜์ง€ ์•Š์œผ๋ฉฐ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•œ๋‹ค.

๋žœ๋คํฌ๋ ˆ์ŠคํŠธ์˜ ์„ฑ๋Šฅ์€ ํŠธ๋ฆฌ ๊ฐœ์ˆ˜ $K$, ๋ถ„ํ•  ์‹œ ๊ณ ๋ คํ•  ๋ณ€์ˆ˜ ๊ฐœ์ˆ˜, ๋…ธ๋“œ ํฌ๊ธฐ ๋“ฑ ๋‹ค์–‘ํ•œ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ์— ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค. ํŠธ๋ฆฌ ๊ฐœ์ˆ˜ $K$๋Š” ์ถฉ๋ถ„ํžˆ ํฐ ๊ฐ’์„ ์„ค์ •ํ•˜๋ฉด ์ผ๋ฐ˜ํ™” ์˜ค๋ฅ˜๊ฐ€ ์ˆ˜๋ ดํ•˜์—ฌ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๋งŽ์€ ํŠธ๋ฆฌ๋Š” ๊ณ„์‚ฐ ๋น„์šฉ์„ ์ฆ๊ฐ€์‹œํ‚ฌ ๋ฟ ์„ฑ๋Šฅ ํ–ฅ์ƒ์—๋Š” ๊ธฐ์—ฌํ•˜์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค[1, 6]. ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ๋Š” ์—ฌ๋Ÿฌ ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค. ๋…ธ์ด์ฆˆ์™€ ์ด์ƒ์น˜์— ๋ณ€๋™์ด ์ ๊ณ  ๊ณผ์ ํ•ฉ์˜ ์œ„ํ—˜์ด ๋‚ฎ๋‹ค. ๋ณ€์ˆ˜ ์ค‘์š”๋„(Variable Importance)๋ฅผ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์–ด, ๋ณ€์ˆ˜์˜ ์„ ํƒ ๋ฐ ๋ชจ๋ธ์˜ ํ•ด์„์—๋„ ํ™œ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋‹ค์ˆ˜์˜ ๋ณ€์ˆ˜์™€ ๋ณต์žกํ•œ ๊ด€๊ณ„๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋น„์„ ํ˜• ๋ชจ๋ธ๋กœ, ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์— ํšจ๊ณผ์ ์ด๋‹ค[7].

kNN์€ ๋ฐ์ดํ„ฐ์˜ ๋น„์„ ํ˜• ๋ถ„ํฌ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๋ชจ์ˆ˜์ (Non-Parametric) ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ, ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์™€ ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๋ชจ๋ธ์€ ๋ถ„๋ฅ˜์™€ ํšŒ๊ท€ ๋ฌธ์ œ์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋ฉฐ, ๊ฐ„๋‹จํ•˜๋ฉด์„œ๋„ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒƒ์ด ํŠน์ง•์ด๋‹ค[8, 9].

kNN์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๊ฑฐ๋ฆฌ ๊ณ„์‚ฐ ๋ฐฉ์‹์€ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ(Euclidean Distance)์ด๋ฉฐ, ์ด๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค[10]:

(2)
$d(A,\: B)=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$

์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ์ˆ˜์‹์„ ํ™œ์šฉํ•œ kNN ๋ชจ๋ธ์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์™€ ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด $k$๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•œ๋‹ค[11]. ์ด ๋ชจ๋ธ์€ ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๋‚˜ ํ˜•ํƒœ์— ๋Œ€ํ•œ ์‚ฌ์ „ ๊ฐ€์ • ์—†์ด ๋™์ž‘ํ•˜๋ฏ€๋กœ, ๋น„๋ชจ์ˆ˜์  ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ ๋ถ„๋ฅ˜๋œ๋‹ค[12]. ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๊ฐ€ ์ฃผ์–ด์ง€๋ฉด, ๋ชจ๋ธ์€ ์„ ํƒ๋œ ์ด์›ƒ๋“ค์˜ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•ด๋‹น ๋ฐ์ดํ„ฐ์˜ ๋ถ„๋ฅ˜ ๋˜๋Š” ํšŒ๊ท€ ๊ฐ’์„ ์˜ˆ์ธกํ•œ๋‹ค[9]. ๋ถ„๋ฅ˜ ๋ฌธ์ œ์—์„œ kNN์€ ๋‹ค์ˆ˜๊ฒฐ ์›์น™์„ ์ ์šฉํ•˜์—ฌ ๊ฐ€์žฅ ๋งŽ์ด ๋“ฑ์žฅํ•˜๋Š” ์ด์›ƒ ๋ฐ์ดํ„ฐ์˜ ํด๋ž˜์Šค๋ฅผ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์— ํ• ๋‹นํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ท ์ผํ•˜๊ฒŒ ๋ถ„ํฌํ•˜๊ณ  ๋…ธ์ด์ฆˆ๊ฐ€ ์ ์„ ๋•Œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ํšŒ๊ท€ ๋ฌธ์ œ์—์„œ๋Š” ์ด์›ƒ ๋ฐ์ดํ„ฐ์˜ ๊ฐ’์˜ ํ‰๊ท ์„ ์‚ฌ์šฉํ•˜์—ฌ ์˜ˆ์ธก๊ฐ’์„ ์‚ฐ์ถœํ•˜๋ฉฐ, ์ด๋Š” ๋ฐ์ดํ„ฐ ๊ฐ’ ๊ฐ„์˜ ์—ฐ์†์ ์ธ ๊ด€๊ณ„๋ฅผ ๋ฐ˜์˜ํ•˜๋Š”๋ฐ ์œ ๋ฆฌํ•˜๋‹ค[11].

kNN ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์€ $k$๊ฐ’์— ํฌ๊ฒŒ ์˜์กดํ•˜๋ฉฐ, $k$๊ฐ’์ด ์ž‘์„ ๊ฒฝ์šฐ ๋ชจ๋ธ์ด ๋…ธ์ด์ฆˆ์— ๋ฏผ๊ฐํ•ด์งˆ ์ˆ˜ ์žˆ๋Š” ๋ฐ˜๋ฉด, $k$๊ฐ’์ด ํฌ๋ฉด ๊ณผ์†Œ์ ํ•ฉ์˜ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ต์ฐจ๊ฒ€์ฆ ๋ฐฉ๋ฒ•์ด ์ž์ฃผ ์‚ฌ์šฉ๋˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋ฐ์ดํ„ฐ์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ $k$๊ฐ’์„ ์ฐพ๋Š”๋‹ค[11, 12]. ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ, ์ฐจ์›์˜ ์ €์ฃผ(The Curse of Dimensionality)๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ๊ณ ์ฐจ์› ๊ณต๊ฐ„์—์„œ ๋ชจ๋“  ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๊ฐ€ ๊ฑฐ์˜ ๋™์ผํ•œ ๊ฑฐ๋ฆฌ์— ์œ„์น˜ํ•˜๊ฒŒ ๋˜๋Š” ๋ฌธ์ œ๋กœ, kNN์˜ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ๊ณ„์‚ฐ ๋ฐฉ์‹์˜ ์œ ํšจ์„ฑ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ฃผ์„ฑ๋ถ„ ๋ถ„์„(Principal Components Analysis, PCA)๊ณผ ๊ฐ™์€ ์ฐจ์› ์ถ•์†Œ ๊ธฐ๋ฒ•์ด ์ ์šฉ๋œ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๊ฐ€ ์‚ฌ์šฉ๋œ๋‹ค[9]. kNN์€ ๋‹จ์ˆœ์„ฑ๊ณผ ์œ ์—ฐ์„ฑ์œผ๋กœ ์ธํ•ด ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด์ƒํƒ์ง€, ๊ฒฐ์ธก๊ฐ’ ๋Œ€์ฒด, ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋“ฑ์—์„œ ์„ฑ๊ณต์ ์œผ๋กœ ์ ์šฉ๋œ ๋ฐ” ์žˆ๋‹ค[11]. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ kNN์ด ๋น„์„ ํ˜•์  ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์—์„œ๋„ ์ผ๊ด€๋œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ๊ณผ ๋ฌธ์ œ ์œ ํ˜•์— ๋งž๋Š” ๋‹ค์–‘ํ•œ ๋ณ€ํ˜• ๋ชจ๋ธ์œผ๋กœ ํ™•์žฅ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.

๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์€ ๋ฒ ์ด์ฆˆ ์ •๋ฆฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ™•๋ฅ ์  ๋ถ„๋ฅ˜ ๋ชจ๋ธ๋กœ, ๋ฐ์ดํ„ฐ์˜ ๊ฐ Feature๊ฐ€ ์ฃผ์–ด์ง„ Class์— ๋Œ€ํ•ด ์กฐ๊ฑด๋ถ€๋กœ ๋…๋ฆฝ์ ์ด๋ผ๋Š” ๊ฐ€์ •์„ ์ „์ œ๋กœ ์ž‘๋™ํ•œ๋‹ค[13]. ์ด ๊ฐ€์ •์€ ํ˜„์‹ค์ ์œผ๋กœ ์ถฉ์กฑ๋˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์ง€๋งŒ, ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ๋Š” ์—ฌ์ „ํžˆ ๋‹ค์–‘ํ•œ ์‹ค์ œ ์‘์šฉ ๋ถ„์•ผ์—์„œ ํšจ๊ณผ์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ, ๊ณ„์‚ฐ ํšจ์œจ์„ฑ๊ณผ ๊ตฌํ˜„์˜ ๋‹จ์ˆœ์„ฑ์œผ๋กœ ์ธํ•ด ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค[13, 14]. ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ๋Š” ๋ฒ ์ด์ฆˆ ์ •๋ฆฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ™•๋ฅ  $P(C \vert X)$๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ, ์ฃผ์–ด์ง„ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ $X$๊ฐ€ ์†ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๊ฐ€์žฅ ๋†’์€ Class $C$๋ฅผ ์˜ˆ์ธกํ•œ๋‹ค. ์ด๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค[13]:

(3)
$P(C \vert X)=\dfrac{P(C)P(X \vert C)}{P(X)}$

$P(C)$๋Š” ํด๋ž˜์Šค์˜ ์‚ฌ์ „ ํ™•๋ฅ , $P(X \vert C)$๋Š” ํด๋ž˜์Šค $C$์—์„œ ๋ฐ์ดํ„ฐ $X$๊ฐ€ ๋ฐœ์ƒํ•  ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ , $P(X)$๋Š” ๋ฐ์ดํ„ฐ $X$์˜ ์ด ํ™•๋ฅ ์ด๋‹ค[13].

๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์˜ ํ•ต์‹ฌ ๊ฐ€์ •์€ Feature๋“ค์ด ํด๋ž˜์Šค์— ๋Œ€ํ•ด ์กฐ๊ฑด๋ถ€๋กœ ๋…๋ฆฝ์ ์ด๋ผ๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋กœ ์ธํ•ด $P(X \vert C)$๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐ๋œ๋‹ค[13]:

(4)
$P(X \vert C)=\prod_{i=1}^{n}P(X_{i}\vert C)$

$X_{i}$๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ $X$์˜ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.

๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ๋Š” ๊ฐ•๋ ฅํ•œ ๋ถ„๋ฅ˜๊ธฐ์ด์ง€๋งŒ, ๋…๋ฆฝ์„ฑ ๊ฐ€์ •์ด ์œ„๋ฐ˜๋˜๋Š” ๊ฒฝ์šฐ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋…๋ฆฝ์„ฑ ๊ฐ€์ •์ด ์œ„๋ฐ˜๋˜๋”๋ผ๋„ ๋‚ฎ์€ ์—”ํŠธ๋กœํ”ผ(Entropy) ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง„ ๋ฐ์ดํ„ฐ์—์„œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค[15].

์ด๋Š” ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๊ฐ€ ํด๋ž˜์Šค ์˜ˆ์ธก์— ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ถฉ๋ถ„ํžˆ ์ œ๊ณตํ•˜๋Š” ๊ฒฝ์šฐ, ๋…๋ฆฝ์„ฑ ๊ฐ€์ •์˜ ์—ฌ๋ถ€์™€ ๊ด€๊ณ„์—†์ด ๋ชจ๋ธ์ด ์ž‘๋™ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค[15].

2.2 ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ง€ํ‘œ

ํ˜ผ๋™ ํ–‰๋ ฌ(Confusion Matrix)๊ณผ ๊ทธ์— ๊ธฐ๋ฐ˜ํ•œ ์„ฑ๋Šฅ ์ง€ํ‘œ์ธ ์ •ํ™•๋„(Accuracy), ์ •๋ฐ€๋„(Precision), ์žฌํ˜„๋„(Recall), F1 ์Šค์ฝ”์–ด(F1 Score) ๋“ฑ์„ ํ†ตํ•˜์—ฌ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค[15, 20].

ํ˜ผ๋™ ํ–‰๋ ฌ์€ ํŒ๋‹จ ๊ฒฐ๊ณผ์™€ ์‹ค์ œ ๊ฒฐ๊ณผ ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ Fig. 2์™€ ๊ฐ™์ด ์‹œ๊ฐ์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ๋ชจ๋ธ์˜ ๋ถ„๋ฅ˜ ์ •ํ™•๋„ ๋ฐ ์˜ค๋ฅ˜ ํŒจํ„ด์„ ๋ช…ํ™•ํžˆ ์ดํ•ดํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค€๋‹ค.

Fig. 2. Confusion matrix[20]

../../Resources/kiiee/JIEIE.2025.39.1.44/fig2.png

ํ˜ผ๋™ ํ–‰๋ ฌ์˜ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

TP(True Positive)๋Š” ์‹ค์ œ๋กœ ์–‘์„ฑ์ธ ์‚ฌ๋ก€๋ฅผ ๋ชจ๋ธ์ด ๋ฐ”๋ฅด๊ฒŒ ํŒ๋‹จํ•œ ๊ฒฝ์šฐ, TN(Trun Negative)์€ ์‹ค์ œ๋กœ ์Œ์„ฑ์ธ ์‚ฌ๋ก€๋ฅผ ๋ชจ๋ธ์ด ๋ฐ”๋ฅด๊ฒŒ ํŒ๋‹จํ•œ ๊ฒฝ์šฐ, FP(False Positive)๋Š” ์‹ค์ œ๋กœ ์Œ์„ฑ์ธ ์‚ฌ๋ก€๋ฅผ ๋ชจ๋ธ์ด ์–‘์„ฑ์œผ๋กœ ์ž˜๋ชป ํŒ๋‹จํ•œ ๊ฒฝ์šฐ, FN(False Negative)์€ ์‹ค์ œ๋กœ ์–‘์„ฑ์ธ ์‚ฌ๋ก€๋ฅผ ๋ชจ๋ธ์ด ์Œ์„ฑ์œผ๋กœ ์ž˜๋ชป ํŒ๋‹จํ•œ ๊ฒฝ์šฐ๋ฅผ ๋œปํ•œ๋‹ค[20].

์ •ํ™•๋„๋Š” ์ „์ฒด ๋ฐ์ดํ„ฐ(TP, TN, FP, FN) ์ค‘ ๋ชจ๋ธ์ด ์‹ค์ œ ์‚ฌ๋ก€์™€ ๋™์ผํ•˜๊ฒŒ ํŒ๋‹จํ•œ ๋ฐ์ดํ„ฐ(TP, TN)์˜ ๋น„์œจ๋กœ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค[15, 16]:

(5)
${Accuracy}=\dfrac{{TP}+{TN}}{{TP}+{TN}+{FP}+{FN}}$

์ •๋ฐ€๋„๋Š” ๋ชจ๋ธ์ด ์–‘์„ฑ์œผ๋กœ ํŒ๋‹จํ•œ ๋ฐ์ดํ„ฐ(TP, FP) ์ค‘ ์‹ค์ œ ์‚ฌ๋ก€์™€ ๋™์ผํ•˜๊ฒŒ ํŒ๋‹จํ•œ ๋ฐ์ดํ„ฐ(TP)์˜ ๋น„์œจ์„ ์˜๋ฏธํ•œ๋‹ค[15, 17, 18]:

(6)
$Precision=\dfrac{{TP}}{{TP}+{FP}}$

์žฌํ˜„๋„๋Š” ์‹ค์ œ ์‚ฌ๋ก€์—์„œ ์–‘์„ฑ์ธ ๋ฐ์ดํ„ฐ(TP, FN) ์ค‘ ๋ชจ๋ธ์ด ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์–‘์„ฑ์œผ๋กœ ํŒ๋‹จํ•œ ๋ฐ์ดํ„ฐ(TP)์˜ ๋น„์œจ์„ ์˜๋ฏธํ•œ๋‹ค[15, 19]:

(7)
${Recall}=\dfrac{{TP}}{{TP}+{FN}}$

F1 ์Šค์ฝ”์–ด๋Š” ์ •๋ฐ€๋„์™€ ์žฌํ˜„๋„์˜ ๊ท ํ˜•์„ ์ด์šฉํ•˜์—ฌ ๋‚˜ํƒ€๋‚ธ ์ง€ํ‘œ๋กœ์„œ, ์ •๋ฐ€๋„์™€ ์žฌํ˜„๋„์˜ ์กฐํ™” ํ‰๊ท ์œผ๋กœ ๊ณ„์‚ฐ๋˜๋ฉฐ ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•์ด ์กด์žฌํ•  ๋•Œ ์œ ์šฉํ•˜๋‹ค. F1 ์Šค์ฝ”์–ด๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค[20]:

(8)
${F}1{Score}=2\times\dfrac{Precision\times{Recall}}{Precision+{Recall}}$

๋‹ค์ค‘ ํด๋ž˜์Šค ํ˜ผ๋™ ํ–‰๋ ฌ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‹ค์ค‘ ํด๋ž˜์Šค ํ˜ผ๋™ ํ–‰๋ ฌ์€ ๋‹ค์ค‘ ํด๋ž˜์Šค์˜ ํŒ๋‹จ ๋ถ„ํฌ๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ์ œ๊ณตํ•˜๋ฉฐ, ๋ถˆ๊ท ํ˜• ๋ฐ์ดํ„ฐ์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋œ๋‹ค. ๋‹ค์ค‘ ํด๋ž˜์Šค ํ˜ผ๋™ ํ–‰๋ ฌ์„ ํ†ตํ•˜์—ฌ ๊ฐ ํด๋ž˜์Šค์˜ ์ฐธ/๊ฑฐ์ง“ ํŒ๋‹จ ์ •๋ณด๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ํด๋ž˜์Šค ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ์ƒ์„ธํžˆ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๋งˆ์ดํฌ๋กœ(Micro), ๋งคํฌ๋กœ(Macro), ๊ฐ€์ค‘ ํ‰๊ท (Weighted Average) ๋ฐฉ์‹์œผ๋กœ ์ •๋ฐ€๋„, ์žฌํ˜„๋„, F1 ์Šค์ฝ”์–ด๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ๋ชจ๋ธ์˜ ์ „๋ฐ˜์ ์ธ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ง€ํ‘œ์™€ ๋‹ค์ค‘ ํด๋ž˜์Šค ํ˜ผ๋™ ํ–‰๋ ฌ์€ ๋ชจ๋ธ์˜ ๊ฐ•์ ๊ณผ ์•ฝ์ ์„ ๋ถ„์„ํ•˜๊ณ , ๊ฐœ์„  ๋ฐฉํ–ฅ์„ ๋„์ถœํ•˜๋Š” ๋ฐ ์œ ์šฉํ•œ ๋„๊ตฌ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค[21].

3. ์‹คํ—˜ ๋ฐฉ๋ฒ•

3.1 ํ…Œ์ŠคํŠธ๋ฒ ๋“œ

๋ณธ ์—ฐ๊ตฌ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์˜ ๊ณ ์žฅ ์ง„๋‹จ์„ ์œ„ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ๊ฐœ๋ฐœ์„ ๋ชฉ์ ์œผ๋กœ, (์ฃผ)ํšจํ•œ์ „๊ธฐ์˜ Fig. 3๊ณผ ๊ฐ™์€ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ ํ™˜๊ฒฝ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์—ฌ ์ง„ํ–‰๋˜์—ˆ๋‹ค.

ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋Š” 500W(HS500WE-GHD30) 6๊ฐœ๋ฅผ ์ง๋ ฌ๋กœ ์—ฐ๊ฒฐํ•œ 3kW ํŒจ๋„๊ณผ ์ธ๋ฒ„ํ„ฐ(DSP-123K6V1C-OD)๋กœ ๊ตฌ์„ฑ๋œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์‹œ์Šคํ…œ์ด ๊ตฌ์ถ•๋˜์–ด์žˆ๊ณ , ์ธ๋ฒ„ํ„ฐ์—์„œ ์ „์••, ์ „๋ฅ˜, ์ „๋ ฅ, ๋ชจ๋“ˆ ํ›„๋ฉด ์˜จ๋„ ๋ฐ์ดํ„ฐ๋ฅผ ์ทจ๋“ํ•˜์˜€๋‹ค. ๊ทธ ์™ธ ๊ตฌ์ถ•๋œ ๊ณ„์ธก๊ธฐ๋กœ๋Š” ์ผ์‚ฌ๋Ÿ‰๊ณ„(DELTA OHM LPPYTA03 SERIES), ๊ธฐ์ƒ ์„ผ์„œ(WH65LP) ๋“ฑ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์–ด ์ผ์‚ฌ๋Ÿ‰๊ณผ ํ’์†, ์™ธ๊ธฐ ์˜จ๋„, ์Šต๋„์˜ ๊ธฐ์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ์ทจ๋“ํ•˜์˜€๋‹ค. ์ด๋“ค ๋ฐ์ดํ„ฐ๋Š” 2023๋…„ 7์›”๋ถ€ํ„ฐ 2024๋…„ 1์›”๊นŒ์ง€, ์•ฝ 7๊ฐœ์›” ๋™์•ˆ 1๋ถ„ ๋‹จ์œ„๋กœ ์ทจ๋“๋˜์—ˆ์œผ๋ฉฐ, ์ด์ค‘ ์ผ๋ชฐ๊ณผ ์ผ์ถœ ์‚ฌ์ด์˜ ๋ฐ์ดํ„ฐ์™€ ๋ถ€ํ’ˆ ๊ต์ฒด ์‹œ๊ธฐ ๋“ฑ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ์™ธํ•œ 39,622๊ฐœ์˜ ๋ฐ์ดํ„ฐ์…‹์„ ์‹คํ—˜์— ์‚ฌ์šฉํ•˜์˜€๋‹ค[1].

Fig. 3. Test bed

../../Resources/kiiee/JIEIE.2025.39.1.44/fig3.png

3.2 ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ•™์Šต

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์˜ ๊ณ ์žฅ ์ง„๋‹จ์„ ์œ„ํ•ด ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ, kNN, ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ์™€ ๊ฐ™์€ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, ์ด๋“ค ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค.

๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šต์„ ์œ„ํ•ด, ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„œ ์ทจ๋“๋œ ๋ฐ์ดํ„ฐ๋Š” ์ „์ฒ˜๋ฆฌ ๋ฐ ๊ทœ์น™ ๊ธฐ๋ฐ˜(Rule-Based)๊ธฐ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ผ๋ฒจ๋ง ๊ณผ์ •์„ ํ†ตํ•ด ๋ถ„์„ ๊ฐ€๋Šฅํ•œ ํ˜•ํƒœ๋กœ ์ค€๋น„๋˜์—ˆ๋‹ค. ๊ทœ์น™ ๊ธฐ๋ฐ˜์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์˜ ์ •์ƒ ์ƒํƒœ์™€ ๊ณ ์žฅ ์ƒํƒœ๋กœ ๊ตฌ๋ถ„๋˜์—ˆ์œผ๋ฉฐ, ๊ณ ์žฅ ์ƒํƒœ๋Š” ๋ฐœ์ƒ ์›์ธ์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค.

๋จผ์ €, Class 0์€ ์ •์ƒ ์ƒํƒœ๋กœ ์ •์˜๋œ๋‹ค. ์ด ์ƒํƒœ๋Š” ๋ฐœ์ „ ์ถœ๋ ฅ์ด ์ตœ๋Œ€ ์ „๋ ฅ์  ์ถœ๋ ฅ์˜ 80% ์ด์ƒ์ผ ๋•Œ๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, ์‹œ์Šคํ…œ์ด ์ •์ƒ์ ์œผ๋กœ ์ž‘๋™ ์ค‘์ž„์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ •์ƒ ์ƒํƒœ์—์„œ๋Š” ์ถœ๋ ฅ์ด ๊ณ ์žฅ ์ƒํƒœ์— ํ•ด๋‹นํ•˜์ง€ ์•Š์œผ๋ฉฐ, ํƒœ์–‘๊ด‘ ์‹œ์Šคํ…œ์ด ํšจ์œจ์ ์œผ๋กœ ๋™์ž‘ํ•˜๊ณ  ์žˆ์Œ์„ ๋ฐ˜์˜ํ•œ๋‹ค.

Class 1์€ ๋ฐœ์ „ ์ถœ๋ ฅ์ด ์ตœ๋Œ€ ์ „๋ ฅ์  ์ถœ๋ ฅ์˜ 110%๋ฅผ ์ดˆ๊ณผํ•˜๋Š” ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ฃผ๋ณ€ ํ™˜๊ฒฝ์— ์˜ํ•ด ๋ฐ˜์‚ฌ๊ด‘์ด ํŒจ๋„์— ์ง‘์ค‘๋˜์—ˆ๊ฑฐ๋‚˜, ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์™€์˜ ํ†ต์‹  ์˜ค๋ฅ˜ ๋“ฑ์œผ๋กœ ์ถœ๋ ฅ์ด ๋น„์ •์ƒ์ ์œผ๋กœ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚œ ๊ฒฝ์šฐ๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ๋ณธ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„œ ์ทจ๋“๋œ ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ ์ผ์‚ฌ๋Ÿ‰ ๋Œ€๋น„ ์ด๋ก  ์ „์••, ์ „๋ฅ˜ ์ค‘ ์ทจ๋“ ์ „๋ฅ˜์˜ ์ˆ˜์น˜๊ฐ€ ๋Œ€์ฒด๋กœ ๋†’์•„ ์ทจ๋“ ์ „๋ ฅ์ด ์ด๋ก ์น˜ ์ „๋ ฅ๋ณด๋‹ค 10% ์ด์ƒ ๋†’๊ฒŒ ๋‚˜์™”๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„œ ์ทจ๋“๋œ Class 1์˜ ๊ฒฝ์šฐ ๋ฐ˜์‚ฌ๊ด‘์— ์˜ํ•œ ์ƒํƒœ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.

๋‹ค์Œ์œผ๋กœ, Class 2๋Š” ์ถœ๋ ฅ ์ „์••์ด ๊ฐœ๋ฐฉ ์ „์••์„ ์ดˆ๊ณผํ•˜๊ฑฐ๋‚˜ ์ถœ๋ ฅ ์ „๋ฅ˜๊ฐ€ ๋‹จ๋ฝ ์ „๋ฅ˜๋ฅผ ์ดˆ๊ณผํ•  ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” ์ƒํƒœ์ด๋‹ค. ํƒœ์–‘๊ด‘ ํŒจ๋„์˜ ๋ฌผ๋ฆฌ์ ์ธ ์„ค๊ณ„ ํ•œ๊ณ„๋ณด๋‹ค ๋†’์€ ์ˆ˜์น˜๊ฐ€ ์ธก์ •๋˜๋Š” ๊ฒฝ์šฐ๋กœ, ๋ฐ์ดํ„ฐ ํ†ต์‹  ์˜ค๋ฅ˜ ํ˜น์€ ์™ธ๋ถ€์—์„œ์˜ ๊ฐ„์„ญ์œผ๋กœ ์‹œ์Šคํ…œ์ด ๊ณผ๋ถ€ํ™” ์ƒํƒœ์— ๋†“์ผ ๊ฐ€๋Šฅ์„ฑ์„ ๋ฐ˜์˜ํ•˜์—ฌ ์ •์˜๋˜์—ˆ๋‹ค. ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„œ ์ทจ๋“๋œ ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ ์ผ์‚ฌ๋Ÿ‰์ด 1,015W/m2์ผ ๋•Œ 1๊ฐœ์˜ ๋ฐ์ดํ„ฐ์…‹๋งŒ ์ทจ๋“๋˜์—ˆ๋‹ค. ์ด๋Š” ๋ฐ˜์‚ฌ๊ด‘์— ์˜ํ•ด ํŒจ๋„์ด ์ตœ๋Œ€ ์ „๋ฅ˜๋ณด๋‹ค ๋†’์€ ์ „๋ฅ˜๋ฅผ ์ถœ๋ ฅํ•˜์˜€๊ณ , ์ผ์‚ฌ๋Ÿ‰ ์„ผ์„œ ๋งˆ์ € ์˜ํ–ฅ์„ ์ค€ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.

Class 3์€ ๊ฐœ๋ฐฉ ํšŒ๋กœ ์ƒํƒœ๋กœ, ์ถœ๋ ฅ ์ „์••์ด ๊ฐœ๋ฐฉ ์ „์•• ๊ทผ์ฒ˜์— ์œ„์น˜ํ•˜๋ฉด์„œ ์ถœ๋ ฅ ์ „๋ฅ˜๊ฐ€ ๋งค์šฐ ๋‚ฎ์€ ๊ฒฝ์šฐ๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Š” ํƒœ์–‘๊ด‘ ์…€ ํฌ๋ž™, ์ ‘์† ๋ถˆ๋Ÿ‰ ๋“ฑ ๋ฌผ๋ฆฌ์  ๊ฒฐํ•จ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์œผ๋ฉฐ, ์ถœ๋ ฅ ์ „๋ฅ˜๊ฐ€ ์‚ฌ์‹ค์ƒ ํ๋ฅด์ง€ ์•Š๋Š” ์ƒํ™ฉ์œผ๋กœ ์„ค๋ช…๋œ๋‹ค. ์ทจ๋“๋œ ๋ฐ์ดํ„ฐ์…‹์˜ ๊ฒฝ์šฐ ํ†ต์‹  ์˜ค๋ฅ˜ ํ˜น์€ ์ผ์‹œ์ ์œผ๋กœ ์‹œ์Šคํ…œ์˜ ํšŒ๋กœ๊ฐ€ ๊ฐœ๋ฐฉ๋œ ์ƒํƒœ๋กœ ๋ณด์ธ๋‹ค. ๋ณดํ†ต 5๋ถ„ ์ด๋‚ด ๊ฐœ๋ฐฉ ์ƒํƒœ ์ดํ›„ ์ •์ƒ์œผ๋กœ ํšŒ๋ณต๋˜๋Š” ํŒจํ„ด์„ ๋ณด์ด๊ณ  ์žˆ๋‹ค.

๋ฐ˜๋Œ€๋กœ, Class 4๋Š” ๋‹จ๋ฝ ์ƒํƒœ๋กœ ์ •์˜๋œ๋‹ค. ์ด ์ƒํƒœ๋Š” ์ถœ๋ ฅ ์ „์••์ด ๊ฑฐ์˜ 0์— ๊ฐ€๊นŒ์šฐ๋ฉด์„œ๋„ ์ถœ๋ ฅ ์ „๋ฅ˜๊ฐ€ ๋‹จ๋ฝ ์ „๋ฅ˜์˜ 85% ์ด์ƒ์œผ๋กœ ๋†’์€ ์ƒํƒœ์ด๋‹ค. ์ด๋Š” ์™ธ๋ถ€ ๋‹จ๋ฝ์ด๋‚˜ ์ „๊ธฐ์  ์—ฐ๊ฒฐ ๋ฌธ์ œ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋ฉฐ, ํƒœ์–‘๊ด‘ ๋ชจ๋“ˆ์˜ ์ „๊ธฐ์  ๋ฌธ์ œ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋ณธ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„œ๋Š” ์ทจ๋“๋˜์ง€ ์•Š์•˜๋‹ค.

Class 5๋Š” ์ŠคํŠธ๋ง ์Œ์˜ ์ƒํƒœ๋ฅผ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•œ ๋ถ„๋ฅ˜์ด๋‹ค. ์ด๋Š” ์ผ์‚ฌ๋Ÿ‰์ด ์ถฉ๋ถ„ํžˆ ๋†’์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ถœ๋ ฅ ์ „๋ฅ˜๊ฐ€ ๋น„์ •์ƒ์ ์œผ๋กœ ๋‚ฎ์€ ๊ฒฝ์šฐ๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ํŠน์ • ์ŠคํŠธ๋ง์— ๋ถ€๋ถ„์ ์œผ๋กœ ์Œ์˜์ด ๋ฐœ์ƒํ–ˆ๊ฑฐ๋‚˜ ์ผ๋ถ€ ์…€์— ๊ฒฐํ•จ์ด ์žˆ์„ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋ณธ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„œ๋Š” ์ทจ๋“๋˜์ง€ ์•Š์•˜๋‹ค. ์ด๋Š” ์ŠคํŠธ๋ง ์Œ์˜์˜ ์กฐ๊ฑด์ด ๋‹ค๋ฅธ ๋ถ€๋ถ„ ์Œ์˜ ์กฐ๊ฑด๋ณด๋‹ค ๊นŒ๋‹ค๋กญ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.

Class 6์€ ์ •์˜๋˜์ง€ ์•Š์€ ์ผ๋ฐ˜์ ์ธ ๊ณ ์žฅ ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋Š” ์œ„์—์„œ ์ •์˜๋œ ์กฐ๊ฑด๋“ค์— ํ•ด๋‹นํ•˜์ง€ ์•Š์ง€๋งŒ ์ถœ๋ ฅ์ด ๋น„์ •์ƒ์ ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒฝ์šฐ๋กœ, ํ•˜๋“œ์›จ์–ด ์ด์ƒ์ด๋‚˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์˜ค๋ฅ˜์™€ ๊ฐ™์€ ๊ทผ๋ณธ์ ์ธ ์›์ธ์„ ํƒ์ƒ‰ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„  ์ •์ƒ ์ƒํƒœ๋ฅผ ์ œ์™ธํ•˜๊ณ  Class 1 ๋‹ค์Œ์œผ๋กœ ๋งŽ์€ ๋ฐ์ดํ„ฐ์…‹์˜ ์ˆ˜๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Š” ์•„์ง ๋ถ„๋ฅ˜๋˜์ง€ ์•Š์€ ๋ถ€๋ถ„ ์Œ์˜๊ณผ ์ „์••, ์ „๋ฅ˜ ๋ฏธ์Šค๋งค์น˜ ์ƒํƒœ ๋“ฑ์ด ์ •์˜๋˜์ง€ ์•Š์•„ ๋‚˜ํƒ€๋‚œ ๊ฒฐ๊ณผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ, Class 7์€ ์ผ์‚ฌ๋Ÿ‰ ๋ถ€์กฑ ์ƒํƒœ๋กœ ์ •์˜ํ•œ๋‹ค. ์ด๋Š” ์ผ์‚ฌ๋Ÿ‰์ด 100W/mยฒ ์ดํ•˜๋กœ ๋‚ฎ์€ ํ™˜๊ฒฝ์—์„œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์‹œ์Šคํ…œ์ด ์ •์ƒ์ ์œผ๋กœ ๋™์ž‘ํ•˜๊ณ  ์žˆ๋Š” ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ถœ๋ ฅ์ด ์ €ํ•˜๋˜์ง€๋งŒ ์ด๋Š” ๊ณ ์žฅ์ด ์•„๋‹Œ ์ •์ƒ์ ์ธ ์ƒํƒœ๋กœ ๊ฐ„์ฃผ๋œ๋‹ค. ๋ณธ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„  ์ฃผ๋กœ ์ผ์ถœ ์ง์ „๊ณผ ์ผ๋ชฐ ์ง์ „์— ๋งŽ์ด ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋‹ค.

์ด๋“ค์€ ์ด 8๊ฐ€์ง€ ์œ ํ˜•์œผ๋กœ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์—์„œ ํ”ํžˆ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์š” ๊ณ ์žฅ๋“ค์„ ํฌํ•จํ•œ๋‹ค.

๋ณธ ๋ฐ์ดํ„ฐ๋Š” ์‹ค์ œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์˜ ์šด์˜ ํ™˜๊ฒฝ์—์„œ ์ž์—ฐ์Šค๋ ˆ ์ทจ๋“๋œ ๋ฐ์ดํ„ฐ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ๋ฐ์ดํ„ฐ๋Š” ๋ถˆ๊ท ํ˜•ํ•œ ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๋ฉฐ, ์ด๋Š” ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์—์„œ์˜ ๊ณ ์žฅ ๋ฐœ์ƒ ๋นˆ๋„๋ฅผ ๋ฐ˜์˜ํ•œ๋‹ค.

ํด๋ž˜์Šค๋ณ„ ๋ฐ์ดํ„ฐ์…‹์˜ ๊ฐœ์ˆ˜๋ฅผ Table 1์— ์ •๋ฆฌํ•˜์˜€์œผ๋ฉฐ, ์ฃผ์š” ํด๋ž˜์Šค์™€ ๊ทธ ์ •์˜๊ฐ€ ํฌํ•จ๋˜์–ด์žˆ๋‹ค.

๋ฐ์ดํ„ฐ ์ทจ๋“์‹œ ์ผ๋ถ€ Class๋Š” ์‹ค์ œ ์„ค๋น„์—์„œ ๋ฐœ์ƒํ•˜์ง€ ์•Š์•„ ๋ฐ์ดํ„ฐ๊ฐ€ ์ทจ๋“๋˜์ง€ ์•Š์•˜๋‹ค.

๋ผ๋ฒจ๋ง๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ์ค‘ 75%๋ฅผ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ๋กœ, 25%๋ฅผ ๊ฒ€์ฆ์šฉ ๋ฐ์ดํ„ฐ๋กœ ๋ถ„ํ• ํ•˜์—ฌ, ์„ธ ๊ฐ€์ง€ ๋ชจ๋ธ์— ์ง€๋„ ํ•™์Šต์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๊ฐ ๋ชจ๋ธ์˜ ํ•™์Šต ๋ฐ ๊ฒ€์ฆ ๊ฒฐ๊ณผ๋Š” ํ˜ผ๋™ ํ–‰๋ ฌ๊ณผ F1 ์Šค์ฝ”์–ด๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€ํ•˜์˜€๋‹ค.

Table 1. Classification of PV system states

Class

State Definition

Count

0

Normal Operation (์ •์ƒ ์ž‘๋™)

23,006

1

Anomaly Detected - Over Pmpp (๊ณ ์žฅ - Pmpp ์ดˆ๊ณผ)

2,368

2

Anomaly Detected - Over Voc or Isc

(๊ณ ์žฅ - Voc, Isc ์ดˆ๊ณผ)

1

3

Anomaly Detected - Open Circuit Fault (Cracked Cell)

(๊ณ ์žฅ - ๊ฐœ๋ฐฉํšŒ๋กœ ๊ณ ์žฅ)

41

4

Anomaly Detected - Short Fault (๊ณ ์žฅ - ๋‹จ๋ฝ)

0

5

Anomaly Detected - Check String Shading (๊ณ ์žฅ - ์Œ์˜)

0

6

Anomaly Detected - Fault (๊ณ ์žฅ)

1,311

7

Normal Operation - Less Irradiance

(์ •์ƒ - ์ผ์‚ฌ๋Ÿ‰ ๋ถ€์กฑ)

12,895

4. ์‹คํ—˜ ๊ฒฐ๊ณผ

4.1 ๋ชจ๋ธ๋ณ„ ์„ฑ๋Šฅ ํ‰๊ฐ€

๋žœ๋คํฌ๋ ˆ์ŠคํŠธ, kNN, ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ง€ํ‘œ๋กœ ์ •ํ™•๋„, ์ •๋ฐ€๋„, ์žฌํ˜„๋„, F1 ์Šค์ฝ”์–ด๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ฐ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ๋ถ„์„ ๊ฒฐ๊ณผ, ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ๊ฐ€ ๊ฐ€์žฅ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, kNN๊ณผ ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ์ €์กฐํ•œ ์„ฑ๋Šฅ์„ ๊ธฐ๋กํ•˜์˜€๋‹ค.

Fig. 4๋Š” ์„ธ ๋ชจ๋ธ์˜ F1 ์Šค์ฝ”์–ด๋ฅผ ์‹œ๊ฐํ™”ํ•œ ๊ฒฐ๊ณผ์ด๋‹ค.

๋žœ๋คํฌ๋ ˆ์ŠคํŠธ ๋ชจ๋ธ์€ ์ „๋ฐ˜์ ์œผ๋กœ ๋ชจ๋“  ์„ฑ๋Šฅ ์ง€ํ‘œ์—์„œ ๋งค์šฐ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. Table 2๋Š” ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ ๋ชจ๋ธ์˜ ํด๋ž˜์Šค๋ณ„ ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ •ํ™•๋„๋Š” 0.9896, ์ •๋ฐ€๋„๋Š” 0.9895, ์žฌํ˜„๋„๋Š” 0.9896, F1 ์Šค์ฝ”์–ด๋Š” 0.9895๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. F1 ์Šค์ฝ”์–ด๋Š” Class 0๊ณผ Class 7์—์„œ ๊ฐ๊ฐ 0.9910๊ณผ 1.0000์„ ๊ธฐ๋กํ•˜๋ฉฐ ์ •์ƒ ์ƒํƒœ์—์„œ ๋งค์šฐ ๋†’์€ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, ๊ณ ์žฅ ์œ ํ˜•์—์„œ๋„ Class 1์—์„œ 0.9302, Class 6์—์„œ 0.9611์„ ๊ธฐ๋กํ•˜์—ฌ ์–‘ํ˜ธํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค.

Fig. 4. F1 score by model

../../Resources/kiiee/JIEIE.2025.39.1.44/fig4.png

Table 2. Random forest performance metrics

Precision

Recall

F1 Score

Support

Class 0

0.9863

0.9958

0.9910

5724

Class 1

0.9597

0.9025

0.9302

554

Class 3

1

1

1

7

Class 6

0.9914

0.9326

0.9611

371

Class 7

1

1

1

3250

Total

0.9895

0.9896

0.9895

9906

kNN ๋ชจ๋ธ์€ ์ •ํ™•๋„ 0.9609, ์ •๋ฐ€๋„ 0.9595, ์žฌํ˜„๋„ 0.9609, F1 ์Šค์ฝ”์–ด 0.9594๋ฅผ ๊ธฐ๋กํ•˜์˜€์œผ๋ฉฐ, ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ๋ณด๋‹ค๋Š” ๋‹ค์†Œ ๋‚ฎ์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. Table 3์€ kNN ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. F1 ์Šค์ฝ”์–ด๋Š” Class 0์—์„œ๋Š” 0.9689๋กœ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋ƒˆ์œผ๋‚˜, Class 1์—์„œ๋Š” 0.7221, Class 6์—์„œ๋Š” 0.8872๋กœ ๊ณ ์žฅ ์œ ํ˜•์—์„œ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๋Š” ๋ชจ์Šต์„ ๋ณด์˜€๋‹ค.

Table 3. kNN performance metrics

Precision

Recall

F1 Score

Support

Class 0

0.9570

0.9810

0.9689

5724

Class 1

0.7987

0.6588

0.7221

554

Class 3

1

0.8571

0.9231

7

Class 6

0.9868

0.8059

0.8872

371

Class 7

0.9881

0.9951

0.9916

3250

Total

0.9595

0.9609

0.9594

9906

๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์€ ์„ธ ๋ชจ๋ธ ์ค‘ ์„ฑ๋Šฅ์ด ๊ฐ€์žฅ ์ €์กฐํ–ˆ๋‹ค. Table 4๋Š” ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ •ํ™•๋„, ์ •๋ฐ€๋„, ์žฌํ˜„๋„, F1 ์Šค์ฝ”์–ด๋Š” ๊ฐ๊ฐ 0.7716, 0.9224, 0.7716, 0.8281๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. F1 ์Šค์ฝ”์–ด๋Š” Class 1, Class 3, Class 6์—์„œ ๊ฐ๊ฐ 0.3963, 0.0196, 0.5868๋กœ ๊ณ ์žฅ ์œ ํ˜• ์ง„๋‹จ์—์„œ ๋‚ฎ์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๋ณต์žกํ•œ ๊ด€๊ณ„๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๋ฅผ ๋ณด์˜€๋‹ค.

Table 4. Naive bayes performance metrics

Precision

Recall

F1 Score

Support

Class 0

0.9606

0.7925

0.8685

5724

Class 1

0.2615

0.8177

0.3963

554

Class 3

0.0099

1

0.0196

7

Class 6

0.6821

0.5148

0.5868

371

Class 7

0.9972

0.7557

0.8598

3250

Total

0.9224

0.7716

0.8281

9906

4.2 ํ˜ผ๋™ ํ–‰๋ ฌ ๋ถ„์„

๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋‹ค์ค‘ ํด๋ž˜์Šค๋กœ ๋ถ„๋ฅ˜๋˜๋ฏ€๋กœ, ๋žœ๋คํฌ๋ ˆํŠธ, kNN, ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์€ ๋‹ค์ค‘ ํด๋ž˜์Šค ํ˜ผ๋™ ํ–‰๋ ฌ๋กœ๋ถ€ํ„ฐ ๋„์ถœ๋˜์—ˆ๋‹ค.

๋žœ๋คํฌ๋ ˆ์ŠคํŠธ ๋ชจ๋ธ์˜ F1 ์Šค์ฝ”์–ด๋Š” 0.9895๋ฅผ ๊ธฐ๋กํ•˜๋ฉฐ, ๋ชจ๋“  ๊ณ ์žฅ ์œ ํ˜•์—์„œ ๊ฐ€์žฅ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค.

Table 5๋Š” ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ์˜ ํ˜ผ๋™ ํ–‰๋ ฌ ๊ฒฐ๊ณผ๋“ค์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋ฉฐ, ํ˜ผ๋™ ํ–‰๋ ฌ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

Class 0์—์„œ ์ด 5724๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘ TP 5700๊ฐœ, FP 79๊ฐœ, FN 24๊ฐœ, TN 4103๊ฐœ๋กœ ์•ฝ 99.58%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์ •์ƒ ์ƒํƒœ๋ฅผ ๋งค์šฐ ๋†’์€ ์ˆ˜์ค€์œผ๋กœ ํŒ๋‹จํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. Class 1์˜ ๊ฒฝ์šฐ ์ด 554๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘ TP 500๊ฐœ, FP 21๊ฐœ, FN 54๊ฐœ, TN 9331๊ฐœ๋กœ ์•ฝ 90.25%์˜ ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ๊ณ ์žฅ ์œ ํ˜•์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ถ€ ์˜ค๋ถ„๋ฅ˜(FP, FN)๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ์„ฑ๋Šฅ์ด ์†Œํญ ๊ฐ์†Œํ•˜์˜€๋‹ค. Class 3์—์„œ๋Š” ์ด 7๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘ TP 7๊ฐœ๋กœ 100%์˜ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ•˜์˜€์œผ๋‚˜, ์ด๋Š” ์ƒ˜ํ”Œ ์ˆ˜๊ฐ€ ๋งค์šฐ ์ ์–ด ๋‚˜ํƒ€๋‚œ ๊ฒฐ๊ณผ๋กœ ๊ณผ๋Œ€ ํ‰๊ฐ€๋˜์—ˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ์‚ฌ๋ก€๋กœ ํ•ด์„๋œ๋‹ค. Class 6์—์„œ๋Š” ์ด 371๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘ TP 346๊ฐœ, FP 3๊ฐœ, FN 25๊ฐœ, TN 9532๊ฐœ๋กœ ์•ฝ 93.26%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค. ํ•ด๋‹น ๊ณ ์žฅ ์œ ํ˜•์˜ ํŒ๋‹จ ์„ฑ๋Šฅ์€ ๋†’์€ ํŽธ์ด์ง€๋งŒ, FN ๊ฐ’์œผ๋กœ ์ธํ•ด ์ผ๋ถ€ ๊ณ ์žฅ์„ ๋†“์น˜๋Š” ์‚ฌ๋ก€๊ฐ€ ํ™•์ธ๋˜์—ˆ๋‹ค. Class 7์€ ์ด 3250๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘ TP 3250๊ฐœ๋กœ 100%์˜ ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋ƒˆ์œผ๋ฉฐ, ์ด๋Š” ์ •์ƒ ์ƒํƒœ์—์„œ ๋ฐœ์ „๋Ÿ‰์ด ์ ์€ ์ƒํ™ฉ์„ ์ •ํ™•ํžˆ ํŒ๋‹จํ•œ ๊ฒฐ๊ณผ์ด๋‹ค.

Table 5. Confusion matrix results for random forest

TP

FP

FN

TN

Class 0

5700

79

24

3750

Class 1

500

21

54

9331

Class 3

7

0

0

9899

Class 6

346

3

25

9532

Class 7

3250

0

0

6656

๋‹ค์ค‘ ํด๋ž˜์Šค ํ˜ผ๋™ ํ–‰๋ ฌ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ ๋ชจ๋ธ์€ ์ „๋ฐ˜์ ์œผ๋กœ ๊ฐ ๊ณ ์žฅ ์œ ํ˜•์—์„œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ•˜๋ฉฐ, ํŠนํžˆ Class 0(์ •์ƒ ์ƒํƒœ)์™€ Class 7(์ •์ƒ ์ƒํƒœ-๋‚ฎ์€ ์ผ์‚ฌ๋Ÿ‰)์—์„œ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ฆ‰, ์ •์ƒ ์ƒํƒœ์™€ ๊ณ ์žฅ ์ƒํƒœ ๊ฐ„์˜ ๊ตฌ๋ถ„์—์„œ ๋›ฐ์–ด๋‚œ ํŒ๋‹จ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ถ€ Class์—์„œ์˜ ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•๊ณผ ์˜ค๋ถ„๋ฅ˜๋Š” ํ–ฅํ›„ ๊ฐœ์„ ์ด ํ•„์š”ํ•œ ๋ถ€๋ถ„์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.

Table 6์€ kNN ๋ชจ๋ธ์˜ ํ˜ผ๋™ ํ–‰๋ ฌ ๊ฒฐ๊ณผ์ด๋‹ค. kNN ๋ชจ๋ธ์˜ F1 ์Šค์ฝ”์–ด๋Š” 0.9594๋ฅผ ๊ธฐ๋กํ•˜๋ฉฐ, ์ผ๋ถ€ ๊ณ ์žฅ ์œ ํ˜•์—์„œ ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ์— ๋น„ํ•ด ๋‚ฎ์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. kNN ๋ชจ๋ธ์˜ ํ˜ผ๋™ ํ–‰๋ ฌ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

Class 0์—์„œ๋Š” ์ด 5724๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘ TP 5615๊ฐœ, FP 252๊ฐœ, FN 109๊ฐœ, TN 3930๊ฐœ๋กœ 98.10%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค. Class 1์—์„œ๋Š” ์ด 554๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘ TP 365๊ฐœ, FP 92๊ฐœ, FN 189๊ฐœ, TN 9260๊ฐœ๋กœ 65.88%์˜ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ•˜์˜€์œผ๋ฉฐ, ์ผ๋ถ€ ๊ณ ์žฅ ์ƒํƒœ์—์„œ ์˜ค๋ถ„๋ฅ˜ ์‚ฌ๋ก€๊ฐ€ ๋‹ค์†Œ ๋ฐœ์ƒํ•˜์˜€๋‹ค. Class 3์—์„œ๋Š” ์ด 7๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘ TP 6๊ฐœ, FN 1๊ฐœ๋กœ 85.71%์˜ ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. Class 6์—์„œ๋Š” ์ด 371๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘ TP 299๊ฐœ, FP 4๊ฐœ, FN 72๊ฐœ, TN 9531๊ฐœ๋กœ 80.59%์˜ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ–ˆ์œผ๋ฉฐ, Class 7์—์„œ๋Š” ์ด 3250๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘ TP 3234๊ฐœ๋กœ 99.51%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค.

Table 6. Confusion matrix results for kNN

TP

FP

FN

TN

Class 0

5615

252

109

3930

Class 1

365

92

189

9260

Class 3

6

0

1

9899

Class 6

299

4

72

9531

Class 7

3234

39

16

6617

kNN ๋ชจ๋ธ์€ ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ์™€ ๊ฐ™์ด Class 0(์ •์ƒ ์ƒํƒœ)์™€ Class 7(์ •์ƒ ์ƒํƒœ-๋‚ฎ์€ ์ผ์‚ฌ๋Ÿ‰)์—์„œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋ƒˆ์œผ๋‚˜, Class 1๊ณผ Class 6๊ณผ ๊ฐ™์€ ๊ณ ์žฅ ์œ ํ˜•์—์„œ๋Š” ๋‹ค์†Œ ๋‚ฎ์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Š” kNN ๋ชจ๋ธ์ด ๊ณ ์žฅ ์œ ํ˜• ๊ฐ„ ๊ฒฝ๊ณ„๊ฐ€ ๋ชจํ˜ธํ•œ ๋ฐ์ดํ„ฐ์—์„œ ๋ถ„๋ฅ˜ ์˜ค๋ฅ˜๋ฅผ ์ผ์œผํ‚ค๊ธฐ ์‰ฝ๋‹ค๋Š” ์ ์„ ๋ณด์—ฌ์ค€๋‹ค.

Table 7์€ ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์˜ ํ˜ผ๋™ ํ–‰๋ ฌ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค.

๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์€ ํ‰๊ท  F1 ์Šค์ฝ”์–ด 0.8281๋กœ, ์„ธ ๋ชจ๋ธ ์ค‘ ๊ฐ€์žฅ ๋‚ฎ์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์˜ ํ˜ผ๋™ ํ–‰๋ ฌ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

Class 0์—์„œ๋Š” 79.25%์˜ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ•˜์˜€์œผ๋ฉฐ, TP๊ฐ€ 4536๊ฐœ๋กœ ์–‘ํ˜ธํ–ˆ์ง€๋งŒ FN์ด 1188๊ฐœ๋กœ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚˜ ๊ณ ์žฅ์˜ ์ผ๋ถ€๋ฅผ ๋†“์น˜๋Š” ์‚ฌ๋ก€๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•˜์˜€๋‹ค. Class 1์—์„œ๋Š” 81.77%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, FN์ด 101๊ฐœ๋กœ ์ƒ๋Œ€์ ์œผ๋กœ ์ ์—ˆ์œผ๋‚˜ FP๊ฐ€ 1279๊ฐœ๋กœ ๋งค์šฐ ๋†’์•„ ๊ณ ์žฅ๊ณผ ์ •์ƒ ์ƒํƒœ ๊ฐ„์˜ ํ˜ผ๋™์ด ๋‹ค์†Œ ๋งŽ์•˜๋‹ค. Class 3์—์„œ๋Š” 100%์˜ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ–ˆ์œผ๋‚˜, FP๊ฐ€ 702๊ฐœ๋กœ ๊ณผ๋Œ€ ํ‰๊ฐ€๋œ ๊ฒฐ๊ณผ๋กœ ํ•ด์„๋˜์—ˆ๋‹ค. Class 6์—์„œ๋Š” 51.48%์˜ ์ •ํ™•๋„๋กœ ๊ฐ€์žฅ ๋‚ฎ์€ ์„ฑ๋Šฅ์„ ๊ธฐ๋กํ•˜์˜€์œผ๋ฉฐ, Class 7์—์„œ๋Š” 75.57%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค.

Table 7. Confusion matrix results for naive bayes

TP

FP

FN

TN

Class 0

4536

186

1188

3996

Class 1

453

1279

101

8073

Class 3

7

702

0

9197

Class 6

191

89

180

9446

Class 7

2456

7

794

6649

๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์€ Class 0(์ •์ƒ ์ƒํƒœ)์™€ Class 1(๊ณ ์žฅ ์œ ํ˜•)์—์„œ ์ผ์ • ์ˆ˜์ค€์˜ ๋ถ„๋ฅ˜ ๋Šฅ๋ ฅ์„ ๋ณด์˜€์œผ๋‚˜, Class 3๊ณผ Class 6๊ณผ ๊ฐ™์€ ๊ณ ์žฅ ์œ ํ˜•์—์„œ๋Š” FP์™€ FN์ด ๋†’์•„ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜์—ˆ๋‹ค. ์ด๋Š” ๋ฐ์ดํ„ฐ ๊ฐ„ ๋ถ„ํฌ์˜ ๋ณต์žก์„ฑ์ด ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ์˜ ๋‹จ์ˆœํ•œ ํ™•๋ฅ  ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์—์„œ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜๋˜์ง€ ๋ชปํ•œ ๊ฒฐ๊ณผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค[1].

5. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์˜ ๊ณ ์žฅ ์ง„๋‹จ์„ ๋ชฉ์ ์œผ๋กœ, ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ, kNN, ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ์„ธ ๊ฐ€์ง€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค. ์‹ค์ œ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ ํ™˜๊ฒฝ์—์„œ ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ์ „์ฒ˜๋ฆฌ ๋ฐ ๋ผ๋ฒจ๋ง ๊ณผ์ •์„ ๊ฑฐ์ณ 8๊ฐœ์˜ ์œ ํ˜• ๋ณ„๋กœ ๋ถ„๋ฅ˜๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ณ  ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋‹ค์ค‘ ํด๋ž˜์Šค๋กœ ๋ถ„๋ฅ˜๋˜๋ฏ€๋กœ ๊ฐ ๋ชจ๋ธ์€ ๋‹ค์ค‘ ํด๋ž˜์Šค ํ˜ผ๋™ ํ–‰๋ ฌ์„ ํ†ตํ•ด ๋ถ„์„๋˜์—ˆ๋‹ค.

๋žœ๋คํฌ๋ ˆ์ŠคํŠธ ๋ชจ๋ธ์€ ๋ชจ๋“  ์„ฑ๋Šฅ ์ง€ํ‘œ์—์„œ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ์ •ํ™•๋„ 98.96%, F1 ์Šค์ฝ”์–ด 0.9895๋กœ, ๋ชจ๋“  ๊ณ ์žฅ ์œ ํ˜•์—์„œ ์•ˆ์ •์ ์ธ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ํŠนํžˆ, ์ •์ƒ ์ƒํƒœ(Class 0, Class 7)์™€ ์ฃผ์š” ๊ณ ์žฅ ์œ ํ˜•(Class 1, Class 6)์—์„œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ•˜์—ฌ ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์˜ ๊ณ ์žฅ ์ง„๋‹จ์— ์ ํ•ฉํ•œ ๋ชจ๋ธ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ๋ฐ˜๋ฉด, kNN ๋ชจ๋ธ์€ F1 ์Šค์ฝ”์–ด 0.9594๋กœ ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ์— ๋น„ํ•ด ๋‹ค์†Œ ๋‚ฎ์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋‚˜, ์ •์ƒ ์ƒํƒœ์™€ ์ผ๋ถ€ ๊ณ ์žฅ ์œ ํ˜•์—์„œ ์–‘ํ˜ธํ•œ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋‚˜์ด๋ธŒ ๋ฒ ์ด์ฆˆ ๋ชจ๋ธ์€ F1 ์Šค์ฝ”์–ด 0.8281๋กœ, Class ๊ฐ„ ์„ฑ๋Šฅ ์ฐจ์ด๊ฐ€ ํฌ๊ณ  ๊ณ ์žฅ ์œ ํ˜•(Class 1, Class 3, Class 6)์—์„œ ๋‚ฎ์€ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ํ•œ๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค.

์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์˜ ๊ณ ์žฅ ์ง„๋‹จ์—๋Š” ๋ฐ์ดํ„ฐ์˜ ๋ณต์žกํ•œ ๋ถ„ํฌ์™€ ํด๋ž˜์Šค ๊ฐ„์˜ ๊ฒฝ๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•˜๊ณ  ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ ๋ชจ๋ธ์ด ๊ฐ€์žฅ ์ ํ•ฉํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ์˜ ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ์™€ ์ผ๋ถ€ ๊ณ ์žฅ ์œ ํ˜•์˜ ์ƒ˜ํ”Œ ๋ถ€์กฑ์ด ๋ชจ๋ธ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜• ๊ฐœ์„ ๊ณผ ๊ฐ™์€ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•จ์„ ์ œ์•ˆํ•œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ ํ™˜๊ฒฝ์—์„œ ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ ํ•ฉํ•œ ๊ณ ์žฅ ์ง„๋‹จ ๋ชจ๋ธ์„ ์ œ์•ˆํ•จ์œผ๋กœ์จ ๋””์ง€ํ„ธ O&M ๊ธฐ์ˆ ์—์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์˜ ์‹ค์ œ์  ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์„ค๋น„์˜ ์šด์˜ ํšจ์šฉ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๋””์ง€ํ„ธ O&M์„ ์œ„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์ ์šฉ, ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ์‹ค์ฆ ์—ฐ๊ตฌ, ๊ทธ๋ฆฌ๊ณ  ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜• ๊ฐœ์„  ๋ฐฉ์•ˆ์„ ๋ชจ์ƒ‰ํ•  ์˜ˆ์ •์ด๋‹ค.

Acknowledgement

๋ณธ ๊ณผ์ œ(๊ฒฐ๊ณผ๋ฌผ)์€ 2024๋…„๋„ ๊ต์œก๋ถ€์˜ ์žฌ์›์œผ๋กœ ํ•œ๊ตญ์—ฐ๊ตฌ์žฌ๋‹จ์˜ ์ง€์›์„ ๋ฐ›์•„ ์ˆ˜ํ–‰๋œ ์ง€์ž์ฒด-๋Œ€ํ•™ ํ˜‘๋ ฅ๊ธฐ๋ฐ˜ ์ง€์—ญํ˜์‹  ์‚ฌ์—…์˜ ๊ฒฐ๊ณผ์ž„(2023RIS-007).

References

1 
J. Hwang, โ€œA study on fault diagnosis for photovoltaic systems with application to digital O&M,โ€ M.S. thesis, Dept. Electrical Eng., Dong-A University, Korea, 2024.URL
2 
M. Kim, โ€œOperation and maintenance (O&M) market analysis for photovoltaic systems,โ€ ASTI Market Insight, no. 49, pp. 1-6, 2022.URL
3 
L. Breiman, โ€œRandom forests,โ€ Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.DOI
4 
S. J. Rigatti, โ€œRandom forest,โ€ J. Insur. Med., vol. 47, no. 1, pp. 31-39, 2017.DOI
5 
Y. Liu, Y. Wang, and J. Zhang, โ€œNew machine learning algorithm: Random forest,โ€ in Proc. ICICA 2012, LNCS, vol. 7473, pp. 246-252, 2012.DOI
6 
P. Probst and A.-L. Boulesteix, โ€œTo tune or not to tune the number of trees in random forest,โ€ J. Mach. Learn. Res., vol. 18, pp. 1-18, 2018.URL
7 
A. Paul, et al., โ€œImproved random forest for classification,โ€ IEEE Trans. Image Process., vol. 27, no. 8, pp. 4012-4023, 2018.DOI
8 
R. K. Halder, et al., โ€œEnhancing k-nearest neighbor algorithm: A comprehensive review and performance analysis of modifications,โ€ Journal of Big Data, vol. 11, no. 113, pp. 1-55, 2024.DOI
9 
S. Zhang, et al., โ€œEfficient kNN classification with different numbers of nearest neighbors,โ€ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1774-1785, 2018.DOI
10 
J. Kim, H. Kim, and S. Choe, โ€œKNN algorithm-based driver face recognition model available for car-sharing service,โ€ Proceeding on Korea Institute of information and Communication Engineering, vol. 27, no. 1, pp. 658-660, 2023.URL
11 
S. Zhang, et al., โ€œLearning k for kNN classification,โ€ ACM Trans. Intell. Syst. Technol., vol. 8, no. 3, pp. 1-19, 2017.DOI
12 
S. Zhang, โ€œChallenges in kNN classification,โ€ IEEE Trans. Knowl. Data Eng., vol. 34, no. 10, pp. 4663-4668, 2022.DOI
13 
S. Taheri and M. Mammadov, โ€œLearning the naive Bayes classifier with optimization models,โ€ Int. J. Appl. Math. Comput. Sci., vol. 23, no. 4, pp. 787-795, 2013.URL
14 
J. Doe, et al., โ€œAn implementation of naive Bayes classifier,โ€ Int. J. Comput. Sci. Appl., vol. 10, no. 2, pp. 45-55, 2015.URL
15 
I. Rish, โ€œAn empirical study of the naive Bayes classifier,โ€ J. Mach. Learn. Res., vol. 3, no. 2, pp. 41-52, 2001.URL
16 
M. Hasnain, et al., โ€œEvaluating trust prediction and confusion matrix measures for web services ranking,โ€ IEEE Access, vol. 8, pp. 90847-90858, 2020.DOI
17 
B. P. Salmon, W. Kleynhans, C. P. Schwegmann, and J. C. Olivier, โ€œProper comparison among methods using a confusion matrix,โ€ 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3057-3060, 2015.DOI
18 
J. Miao and W. Zhu, โ€œPrecisionโ€“recall curve (PRC) classification trees,โ€ Evol. Intell., vol. 14, no. 1, pp. 23-35, 2021.DOI
19 
P. Liang, et al., โ€œMachine learning of single-cell transcriptome highly identifies mRNA signature by comparing F-score selection with DGE analysis,โ€ Mol. Ther. Nucleic Acids, vol. 20, pp. 155-160, 2020.DOI
20 
A. Tharwat, โ€œClassification assessment methods,โ€ Appl. Comput. Inform., vol. 17, no. 1, pp. 168-192, 2021.DOI
21 
M. Heydarian, et al., โ€œMLCM: Multi-label confusion matrix,โ€ IEEE Access, vol. 10, pp. 19083-19086, 2022.DOI

Biography

Jae-Eun Hwang
../../Resources/kiiee/JIEIE.2025.39.1.44/au1.png

He received his B.S. degree in Energy Science(Physics) from Kyungsung University, Busan, South Korea, in February 2018. He completed his M.S. degree in Electrical Engineering from Dong-A University, Busan, South Korea, in August 2024. He subsequently started his Ph.D. program in the same field at the same university in September of the same year.

Yoon Hee Oh
../../Resources/kiiee/JIEIE.2025.39.1.44/au2.png

She received her B.S. degree in Electrical Engineering from Dong-A University, Busan, South Korea, in 2023, and is expected to complete her M.S. degree in the same field at the same university in 2025. Her primary research interests include Renewable energy and Energy Policy.

Byung O Kang
../../Resources/kiiee/JIEIE.2025.39.1.44/au3.png

He received his B.S. degree in Electrical Engineering from Iowa State University in 2008 and his M.S. and Ph.D. degrees in Electrical Engineering from Virginia Tech in 2010 and 2014, respectively. He is currently an associate professor in the Department of Electrical Engineering at Dong-A University. His research interests include microgrid technologies, energy storage systems (ESS), and renewable energy.

Herie Park
../../Resources/kiiee/JIEIE.2025.39.1.44/au4.png

She received the B.S. degree from Cergy Paris Universitรฉ, France, in 2006, the M.S. degree in Electrical Engineering from Yeungnam University, Korea, in 2009, and the Ph.D. degree in electrical and electronic engineering from Cergy Paris Universitรฉรฉin 2013, respectively. From 2013 to 2014, she has been a Post-Doctoral Researcher at Ecole Normale Supรฉrieure Paris-Saclay, France. She has been a Research Professor at Yeungnam University from 2014 to 2019 and Hanyang University, Korea, from 2019 to 2021, respectively. She is currently an Assistant Professor at the Department of Electrical Engineering, Dong-A University, Korea. Her research interests include Electrical Insulation, Complex Materials, and Energy Management.