Mobile QR Code QR CODE

REFERENCES

1 
Goldston R. J., Rutherford P. H., 1995, Introduction to Plasma Physics, London, U.K.: IOP, pp. 1-2Google Search
2 
Conards H., Schmidt M., Nov 2000, Plasma generation and plasma sources, Plasma Sources Sci. Technol., Vol. 9, No. 4, pp. 441-454DOI
3 
Laroussi M., Jun 2009, Low-temperature plasmas for medicine?, IEEE Trans. Plasma Sci., Vol. 37, No. 6, pp. 714-725DOI
4 
Bai B., Li X., Xu J., Liu Y., Aug 2015, Reflections of electromagnetic waves obliquely incident on a multilayer stealth structure with plasma and radar absorbing material, IEEE Trans. Plasma Sci., Vol. 43, No. 8, pp. 2588-2597DOI
5 
Park S.-J., Aug 2010, Inactivation of S. mutants using an atmospheric plasma driven by a palm-size-integrated microwave power module, IEEE Trans.Plasma Sci., Vol. 38, No. 8, pp. 1956-1962DOI
6 
Corke T. C., Enloe C. L., Wilkinson S. P., Sep 2010, Dielectric barrier discharge plasma actuators for flow control, Annu. Rev. Fluid Mech., Vol. 42, pp. 505-529DOI
7 
Sun P., Aug 2010, Tooth whitening with hydrogen peroxide assisted by a direct-current cold atmospheric-pressure air plasma microjet, IEEE Trans. Plasma Sci., Vol. 38, No. 8, pp. 1892-1896DOI
8 
Choi J., Mohamed A.-A. H., Kang S. K., Woo K. C., Kim K. T., Lee J. K., Mar 2010, 900-MHz nonthermal atmospheric pressure plasma jet for biomedical applications, Plasma Process. Polym., Vol. 7, No. 3-4, pp. 258-263DOI
9 
Olszewski P., Li J. F., Liu D. X., Walsh J. L., Aug 2014, Optimizing the electrical excitation of an atmospheric pressure plasma advanced oxidation process, J. Hazardous Mater., Vol. 279, pp. 60-66DOI
10 
Xu N., Cui X., Fang Z., Shi Y., Zhou R., Apr 2018, A two-mode portable atmospheric pressure air plasma jet device for biomedical applications, IEEE Trans. Plasma Sci., Vol. 46, No. 4, pp. 947-953DOI
11 
Kang S. K., Kim H. Y., Yun G. S., Lee J. K., 2015, Portable microwave air plasma device for wound healing, Plasma Sour. Sci. Technol., Vol. 24, No. 3, pp. 20-35DOI
12 
Johnson M. J., Boris D. R., Petrova T. B., Walton S. G., Jan 2019, Characterization of a Compact, Low-Cost Atmospheric-Pressure Plasma Jet Driven by a Piezoelectric Transformer, IEEE Trans. Plasma Sci., Vol. 47, No. 1, pp. 434-444DOI
13 
Kang S. K., Seo Y. S., Lee H. W., Rehman Aman-ur, Kim G. C., Lee J. K., Oct 2011, Slit shaped microwave induced atmospheric pressure plasma based on a parallel plate transmission line resonator, J. Phys. D, Appl. Phys., Vol. 44, No. 42, pp. 435201DOI
14 
Park J., Henins I., Hermann H. W., Selwyn G. S., Jan 2000, An atmospheric pressure plasma source, Appl. Phys. Lett., Vol. 76, No. 3, pp. 288-290DOI
15 
Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P., Jan 2006, Atmospheric pressure plasmas: A review, Spectrochim. Acta B, At. Spectrosc., Vol. 61, No. 1, pp. 2-30DOI
16 
Kwon H. C., Won I. H., Lee J. K., Apr 2012, Electron heating mode transition induced by ultra-high frequency in atmospheric microplasmas for biomedical applications, Appl. Phys. Lett., Vol. 100, No. 18, pp. 183702-1-183702-4DOI
17 
Gesche R., Kühn S., Andrei C., Oct 2008, Plasma ignition in a quarter-wavelength microwave slot resonator, J. Phys. D, Appl. Phys., Vol. 41, No. 19, pp. 194003DOI
18 
Iza F., Hopwood J. A., Aug 2003, Low-power microwave plasma source based on a microstrip split-ring resonator, IEEE Trans. on Plasma Sci., Vol. 31, No. 4, pp. 782-787DOI
19 
Xue J., Hopwood J. A., June 2009, Microwave-Frequency Effects on Microplasma, IEEE Trans. Plasma Sci., Vol. 37, No. 6, pp. 816-822DOI
20 
Iza F., Hopwood J., May 2005, Split-ring resonator microplasma: Microwave model, plasma impedance and power efficiency, Plasma Sources Sci. Technol., Vol. 14, No. 2, pp. 397-406DOI
21 
Choi J., Iza F., Do H. J., Lee J. K., Cho M. H., May 2009, Microwave-excited atmospheric-pressure microplasmas based on a coaxial transmission line resonator, Plasma Sour. Sci. Technol., Vol. 18, No. 2, pp. 025029DOI
22 
Kwon S. K., Park S., Won I. H., Ahn C., Sim J., June 2017, Microwave Plasma Generation With Resonance Frequency Tracking and Power Regulation, IEEE Trans. Plasma Sci., Vol. 45, No. 6, pp. 925-931DOI
23 
Harpe P. J. A., Zhou C., Bi Y., van der Meijs N. P., Wang X., Philips K., Dolmans G., De Groot H., Jul 2011, A 26 μW 8 bit 10 MS/s asynchronous SAR ADC for low energy radios, IEEE J. Solid-State Circuits, Vol. 46, No. 7, pp. 1585-1595DOI
24 
Kwon H. C., Won I. H., Lee J. K., Apr 2012, Electron heating mode transition induced by ultra-high frequency in atmospheric microplasmas for biomedical applications, Appl. Phys. Lett., Vol. 100, No. 18, pp. 183702-1-183702-4DOI