Mobile QR Code QR CODE

References

1 
Bito J., Bahr R., Hester J. G., Nauroze S. A., Georgiadis A., Tentzeris M. M., May 2017, A Novel Solar and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors, IEEE Trans. Microw. Theory Tech., Vol. 65, No. 5, pp. 1831-1842DOI
2 
Dini M., Romani A., Filippi M., Bottarel V., Ricotti G., Tartagni M., Oct. 2015, A Nanocurrent Power Management IC for Multiple Heterogeneous Energy Harvesting Sources, IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5665-5680DOI
3 
Kim S., et al. , Nov. 2014, Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms, Proc. IEEE, Vol. 102, No. 11, pp. 1649-1666DOI
4 
Qiu Y., Van Liempd C., het Veld B. O., Blanken P. G., Van Hoof C., Feb. 2011, 5\&\#x03BC;W-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm, in 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, pp. 118-120DOI
5 
Kim S.-Y., et al. , Jul. 2019, A -20 to 30 dBm Input Power Range Wireless Power System With a MPPT-Based Reconfigurable 48% Efficient RF Energy Harvester and 82% Efficient A4WP Wireless Power Receiver With Open-Loop Delay Compensation, IEEE Trans. Power Electron., Vol. 34, No. 7, pp. 6803-6817DOI
6 
Danial Khan , Zaffar Hayat Nawaz Khan , Kang Yoon Lee , Hamed Abbasizadeh , Jul. 2017, A 33.3% Power Efficiency RF Energy Harvester with -25dBm Sensitivity using Threshold Compensation Scheme, IDEC J. Integr. Circuits Syst., Vol. 3, No. 3, pp. 7-12DOI
7 
Khan D., et al. , May 2018, A Design of Ambient RF Energy Harvester with Sensitivity of ${-}$21 dBm and Power Efficiency of a 39.3% Using Internal Threshold Voltage Compensation, Energies, Vol. 11, No. 5, pp. 1258DOI
8 
Khan D., et al. , Jun. 2019, A CMOS RF Energy Harvester With 47% Peak Efficiency Using Internal Threshold Voltage Compensation, IEEE Microw. Wirel. Compon. Lett., Vol. 29, No. 6, pp. 415-417DOI
9 
Khan D., et al. , 2020, An Efficient Reconfigurable RF-DC Converter With Wide Input Power Range for RF Energy Harvesting, IEEE Access, Vol. 8, pp. 79310-79318DOI
10 
Wang Z., Leonov V., Fiorini P., Van Hoof C., Nov. 2009, Realization of a wearable miniaturized thermoelectric generator for human body applications, Sens. Actuators Phys., Vol. 156, No. 1, pp. 95-102DOI
11 
Din N. Md., Chakrabarty C. K., Bin Ismail A., Devi K. K. A., Chen W.-Y., 2012, DESIGN OF RF ENERGY HARVESTING SYSTEM FOR ENERGIZING LOW POWER DEVICES, Prog. Electromagn. Res., Vol. 132, pp. 49-69DOI
12 
Ottman G. K., Hofmann H. F., Lesieutre G. A., Mar. 2003, Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode, IEEE Trans. Power Electron., Vol. 18, No. 2, pp. 696-703DOI
13 
Warneke B. A., et al. , 2002, An autonomous 16 mm/sup 3/solar-powered node for distributed wireless sensor networks, in Proceedings of IEEE Sensors, Orlando, FL, USA, Vol. 2, pp. 1510-1515DOI
14 
Pinuela M., Mitcheson P. D., Lucyszyn S., Jul. 2013, Ambient RF Energy Harvesting in Urban and Semi-Urban Environments, IEEE Trans. Microw. Theory Tech., Vol. 61, No. 7, pp. 2715-2726DOI
15 
Vyas R. J., Cook B. B., Kawahara Y., Tentzeris M. M., Jun. 2013, E-WEHP: A Batteryless Embedded Sensor-Platform Wirelessly Powered From Ambient Digital-TV Signals, IEEE Trans. Microw. Theory Tech., Vol. 61, No. 6, pp. 2491-2505DOI
16 
Barroca N., et al. , Sep. 2013, Antennas and circuits for ambient RF energy harvesting in wireless body area networks, in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, Mobile Radio Communications (PIMRC), London, pp. 532-537DOI
17 
Takhedmit H., Sep. 2016, Ambient RF power harvesting: Application to remote supply of a batteryless temperature sensor, in 2016 IEEE International Smart Cities Conference (ISC2), Trento, Italy, pp. 1-4DOI
18 
Mimis K., Gibbins D., Dumanli S., Watkins G. T., Apr. 2015, Ambient RF energy harvesting trial in domestic settings, IET Microw. Antennas Propag., Vol. 9, No. 5, pp. 454-462DOI
19 
Andrenko A. S., Xianyang Lin , Miaowang Zeng , Nov. 2015, Outdoor RF spectral survey: A roadmap for ambient RF energy harvesting, in TENCON 2015 - 2015 IEEE Region 10 Conference, Macao, pp. 1-4DOI
20 
Harouni Z., Cirio L., Osman L., Gharsallah A., Picon O., 2011, A Dual Circularly Polarized 2.45-GHz Rectenna for Wireless Power Transmission, IEEE Antennas Wirel. Propag. Lett., Vol. 10, pp. 306-309DOI
21 
Bito J., Hester J. G., Tentzeris M. M., Dec. 2015, Ambient RF Energy Harvesting From a Two-Way Talk Radio for Flexible Wearable Wireless Sensor Devices Utilizing Inkjet Printing Technologies, IEEE Trans. Microw. Theory Tech., Vol. 63, No. 12, pp. 4533-4543DOI
22 
Abouzied M. A., Sanchez-Sinencio E., Nov. 2015, Low-Input Power-Level CMOS RF Energy-Harvesting Front End, IEEE Trans. Microw. Theory Tech., Vol. 63, No. 11, pp. 3794-3805DOI
23 
Yu-Jiun Ren , Kai Chang , Jun. 2006, 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission, IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, pp. 1495-1502DOI
24 
Zhang Y., et al. , Jan. 2013, A Batteryless 19 \$\textbackslash mu\$W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications, IEEE J. Solid-State Circuits, Vol. 48, No. 1, pp. 199-213DOI
25 
Mansano A. L., Li Y., Bagga S., Serdijn W. A., Jun. 2016, An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 m CMOS, IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 3, pp. 602-611DOI
26 
Kim Y.-J., Bhamra H. S., Joseph J., Irazoqui P. P., Nov. 2015, An Ultra-Low-Power RF Energy-Harvesting Transceiver for Multiple-Node Sensor Application, IEEE Trans. Circuits Syst. II Express Briefs, Vol. 62, No. 11, pp. 1028-1032DOI
27 
Rajavi Y., Taghivand M., Aggarwal K., Ma A., Poon A. S. Y., May 2017, An RF-Powered FDD Radio for Neural Microimplants, IEEE J. Solid-State Circuits, Vol. 52, No. 5, pp. 1221-1229DOI
28 
Kumar A., Hancke G. P., Dec. 2014, An Energy-Efficient Smart Comfort Sensing System Based on the IEEE 1451 Standard for Green Buildings, IEEE Sens. J., Vol. 14, No. 12, pp. 4245-4252DOI
29 
Stoopman M., Philips K., Serdijn W. A., Jul. 2017, An RF-Powered DLL-Based 2.4-GHz Transmitter for Autonomous Wireless Sensor Nodes, IEEE Trans. Microw. Theory Tech., Vol. 65, No. 7, pp. 2399-2408DOI
30 
Papotto G., Greco N., Finocchiaro A., Guerra R., Leotta S., Palmisano G., Jan. 2018, An RF-Powered Transceiver Exploiting Sample and Hold Operation on the Received Carrier, IEEE Trans. Microw. Theory Tech., Vol. 66, No. 1, pp. 396-409DOI
31 
Leonov V., Jun. 2013, Thermoelectric Energy Harvesting of Human Body Heat for Wearable Sensors, IEEE Sens. J., Vol. 13, No. 6, pp. 2284-2291DOI
32 
Lu J.-J., Yang X.-X., Mei H., Tan C., Oct. 2016, A Four-Band Rectifier With Adaptive Power for Electromagnetic Energy Harvesting, IEEE Microw. Wirel. Compon. Lett., Vol. 26, No. 10, pp. 819-821DOI
33 
Kuhn V., Lahuec C., Seguin F., Person C., May 2015, A Multi-Band Stacked RF Energy Harvester With RF-to-DC Efficiency Up to 84%, IEEE Trans. Microw. Theory Tech., Vol. 63, No. 5, pp. 1768-1778DOI
34 
Scheeler R., Korhummel S., Popovic Z., Jan. 2014, A Dual-Frequency Ultralow-Power Efficient 0.5-g Rectenna, IEEE Microw. Mag., Vol. 15, No. 1, pp. 109-114DOI
35 
Roundy S., Wright P. K., Rabaey J., Jul. 2003, A study of low level vibrations as a power source for wireless sensor nodes, Comput. Commun., Vol. 26, No. 11, pp. 1131-1144DOI
36 
Roundy S., Wright P. K., Oct. 2004, A piezoelectric vibration based generator for wireless electronics, Smart Mater. Struct., Vol. 13, No. 5, pp. 1131-1142DOI
37 
Bi S., Ho C. K., Zhang R., Apr. 2015, Wireless powered communication: opportunities and challenges, IEEE Commun. Mag., Vol. 53, No. 4, pp. 117-125DOI
38 
Ng D. W. K., Lo E. S., Schober R., 2013, Wireless Information and Power Transfer: Energy Efficiency Optimization in OFDMA SystemsDOI
39 
Takacs A., Okba A., Aubert H., Charlot S., Calmon P.-F., May 2017, Recent advances in electromagnetic energy harvesting and Wireless Power Transfer for IoT and SHM applications, in 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Donostia, San Sebastian, Spain, pp. 1-4DOI
40 
Reinisch H., et al. , Jul. 2011, An Electro-Magnetic Energy Harvesting System With 190 nW Idle Mode Power Consumption for a BAW Based Wireless Sensor Node, IEEE J. Solid-State Circuits, Vol. 46, No. 7, pp. 1728-1741DOI
41 
Xia M., Aissa S., Jun. 2015, On the Efficiency of Far-Field Wireless Power Transfer, IEEE Trans. Signal Process., Vol. 63, No. 11, pp. 2835-2847DOI
42 
Thomas J. P., Qidwai M. A., Kellogg J. C., Sep. 2006, Energy scavenging for small-scale unmanned systems, J. Power Sources, Vol. 159, No. 2, pp. 1494-1509DOI
43 
Kurs A., Karalis A., Moffatt R., Joannopoulos J. D., Fisher P., Soljačić M., Jul. 2007, Wireless Power Transfer via Strongly Coupled Magnetic Resonances, Science, Vol. 317, No. 5834, pp. 83-86DOI
44 
Lu X., Wang P., Niyato D., Kim D. I., Han Z., 2015, Wireless Networks With RF Energy Harvesting: A Contemporary Survey, IEEE Commun. Surv. Tutor., Vol. 17, No. 2, pp. 757-789DOI
45 
Singh J., Kaur R., Singh D., Jan. 2021, Energy harvesting in wireless sensor networks: A taxonomic survey, Int. J. Energy Res., Vol. 45, No. 1, pp. 118-140DOI
46 
Muhammad S., Jiat Tiang J., Kin Wong S., Iqbal A., Alibakhshikenari M., Limiti E., Oct. 2020, Compact Rectifier Circuit Design for Harvesting GSM/900 Ambient Energy, Electronics, Vol. 9, No. 10, pp. 1614DOI
47 
Liu J., Xue Q., Wong H., Lai H. W., Long Y., Jan. 2013, Design and Analysis of a Low-Profile and Broadband Microstrip Monopolar Patch Antenna, IEEE Trans. Antennas Propag., Vol. 61, No. 1, pp. 11-18DOI
48 
Ali M., Albasha L., Qaddoumi N., Mar. 2013, RF energy harvesting for autonomous wireless sensor networks, in 2013 8th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Abu Dhabi, pp. 78-81DOI
49 
AbdelTawab A. M., Khattab A., May 2016, Efficient multi-band energy Harvesting circuit for Wireless Sensor nodes, in 2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC), Cairo, Egypt, pp. 75-78DOI
50 
Agrawal S., Parihar M. S., Kondekar P. N., Jan. 2017, A dual-band RF energy harvesting circuit using 4th order dual-band matching network, Cogent Eng., Vol. 4, No. 1, pp. 1332705DOI
51 
Liu Z., Zhong Z., Guo Y.-X., Sep. 2015, Enhanced Dual-Band Ambient RF Energy Harvesting With Ultra-Wide Power Range, IEEE Microw. Wirel. Compon. Lett., Vol. 25, No. 9, pp. 630-632DOI
52 
Agrawal S., Pandey S. K., Singh J., Parihar M. S., Mar. 2014, Realization of efficient RF energy harvesting circuits employing different matching technique, in Fifteenth International Symposium on Quality Electronic Design, Santa Clara, CA, USA, pp. 754-761DOI
53 
Ito K., Haga N., Nov. 2010, Basic characteristics of wearable antennas for body-centric wireless communications, in 2010 Loughborough Antennas & Propagation Conference, Loughborough, United Kingdom, pp. 42-47DOI
54 
Kaivanto E. K., Berg M., Salonen E., de Maagt P., Dec. 2011, Wearable Circularly Polarized Antenna for Personal Satellite Communication and Navigation, IEEE Trans. Antennas Propag., Vol. 59, No. 12, pp. 4490-4496DOI
55 
Kellomaki T., Heikkinen J., Kivikoski M., Dec. 2006, Effects of bending GPS antennas, in 2006 Asia-Pacific Microwave Conference, Yokohama, Japan, pp. 1597-1600DOI
56 
Kuga N., Arai H., 1996, Circular patch antennas miniaturized by shorting posts, Electron. Commun. Jpn. Part Commun., Vol. 79, No. 6, pp. 51-58DOI
57 
Gianvittorio J. P., Rahmat-Samii Y., Feb. 2002, Fractal antennas: a novel antenna miniaturization technique, applications, IEEE Antennas Propag. Mag., Vol. 44, No. 1, pp. 20-36DOI
58 
Hameed Z., Moez K., Apr. 2017, Design of impedance matching circuits for RF energy harvesting systems, Microelectron. J., Vol. 62, pp. 49-56DOI
59 
Merz C., Kupris G., Sep. 2016, High Q impedance matching for RF energy harvesting applications, in 2016 3rd International Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Offenburg, Germany, pp. 45-50DOI
60 
Song C., et al. , May 2017, Matching Network Elimination in Broadband Rectennas for High-Efficiency Wireless Power Transfer and Energy Harvesting, IEEE Trans. Ind. Electron., Vol. 64, No. 5, pp. 3950-3961DOI
61 
Tran L.-G., Cha H.-K., Park W.-T., Dec. 2017, RF power harvesting: a review on designing methodologies and applications, Micro Nano Syst. Lett., Vol. 5, No. 1, pp. 14DOI
62 
Rosli M. A., Murad S. A. Z., Ismail R. C., 2016, A 900-2400 MHz AC-DC Rectifier Circuit for Radio Frequency Energy Harvesting, MATEC Web Conf., Vol. 78, pp. 01096DOI
63 
Papotto G., Carrara F., Palmisano G., Sep. 2011, A 90-nm CMOS Threshold-Compensated RF Energy Harvester, IEEE J. Solid-State Circuits, Vol. 46, No. 9, pp. 1985-1997DOI
64 
Shameli A., Safarian A., Rofougaran A., Rofougaran M., De Flaviis F., Jun. 2007, Power Harvester Design for Passive UHF RFID Tag Using a Voltage Boosting Technique, IEEE Trans. Microw. Theory Tech., Vol. 55, No. 6, pp. 1089-1097DOI
65 
Hoarau C., Corrao N., Arnould J.-D., Ferrari P., Xavier P., Nov. 2008, Complete Design and Measurement Methodology for a Tunable RF Impedance-Matching Network, IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, pp. 2620-2627DOI
66 
Marrocco G., Feb. 2008, The art of UHF RFID antenna design: impedance-matching and size-reduction techniques, IEEE Antennas Propag. Mag., Vol. 50, No. 1, pp. 66-79DOI
67 
deMingo J., Valdovinos A., Crespo A., Navarro D., Garcia P., Feb. 2004, An RF Electronically Controlled Impedance Tuning Network Design and Its Application to an Antenna Input Impedance Automatic Matching System, IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, pp. 489-497DOI
68 
Zeng Z., Li X., Bermak A., Tsui C.-Y., Ki W.-H., May 2016, A WLAN 2.4-GHz RF energy harvesting system with reconfigurable rectifier for wireless sensor network, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montréal, QC, Canada, pp. 2362-2365DOI
69 
Ouda M. H., Khalil W., Salama K. N., May 2017, Self-Biased Differential Rectifier With Enhanced Dynamic Range for Wireless Powering, IEEE Trans. Circuits Syst. II Express Briefs, Vol. 64, No. 5, pp. 515-519DOI
70 
Saffari P., Basaligheh A., Moez K., Dec. 2019, An RF-to-DC Rectifier With High Efficiency Over Wide Input Power Range for RF Energy Harvesting Applications, IEEE Trans. Circuits Syst. Regul. Pap., Vol. 66, No. 12, pp. 4862-4875DOI
71 
Stoopman M., Keyrouz S., Visser H. J., Philips K., Serdijn W. A., Mar. 2014, Co-Design of a CMOS Rectifier and Small Loop Antenna for Highly Sensitive RF Energy Harvesters, IEEE J. Solid-State Circuits, Vol. 49, No. 3, pp. 622-634DOI
72 
Scorcioni S., Larcher L., Bertacchini A., Vincetti L., Maini M., May 2013, An integrated RF energy harvester for UHF wireless powering applications, in 2013 IEEE Wireless Power Transfer (WPT), Perugia, Italy, pp. 92-95DOI
73 
Lu Y., et al. , Feb. 2017, A Wide Input Range Dual-Path CMOS Rectifier for RF Energy Harvesting, IEEE Trans. Circuits Syst. II Express Briefs, Vol. 64, No. 2, pp. 166-170DOI
74 
Basim M., et al. , Mar. 2022, A Highly Efficient RF-DC Converter for Energy Harvesting Applications Using a Threshold Voltage Cancellation Scheme, Sensors, Vol. 22, No. 7, pp. 2659DOI
75 
Abouzied M. A., Ravichandran K., Sanchez-Sinencio E., Mar. 2017, A Fully Integrated Reconfigurable Self-Startup RF Energy-Harvesting System With Storage Capability, IEEE J. Solid-State Circuits, Vol. 52, No. 3, pp. 704-719DOI
76 
Moghaddam A. K., Chuah J. H., Ramiah H., Ahmadian J., Mak P.-I., Martins R. P., Apr. 2017, A 73.9%-Efficiency CMOS Rectifier Using a Lower DC Feeding (LDCF) Self-Body-Biasing Technique for Far-Field RF Energy-Harvesting Systems, IEEE Trans. Circuits Syst. Regul. Pap., Vol. 64, No. 4, pp. 992-1002DOI
77 
Hameed Z., Moez K., Apr. 2015, A 3.2 V -15 dBm Adaptive Threshold-Voltage Compensated RF Energy Harvester in 130 nm CMOS, IEEE Trans. Circuits Syst. Regul. Pap., Vol. 62, No. 4, pp. 948-956DOI
78 
Hameed Z., Moez K., Sep. 2014, Hybrid Forward and Backward Threshold-Compensated RF-DC Power Converter for RF Energy Harvesting, IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 4, No. 3, pp. 335-343DOI
79 
Xu P., Flandre D., Bol D., Oct. 2019, Analysis, Modeling, Design of a 2.45-GHz RF Energy Harvester for SWIPT IoT Smart Sensors, IEEE J. Solid-State Circuits, Vol. 54, No. 10, pp. 2717-2729DOI
80 
Dehghani S., Johnson T., May 2016, A 2.4-GHz CMOS Class-E Synchronous Rectifier, IEEE Trans. Microw. Theory Tech., Vol. 64, No. 5, pp. 1655-1666DOI
81 
Li C.-J., Lee T.-C., Feb. 2014, 2.4-GHz High-Efficiency Adaptive Power, IEEE Trans. Very Large Scale Integr. VLSI Syst., Vol. 22, No. 2, pp. 434-438DOI
82 
European Association on Antennas and Propagation, Ed., 2013 7th European Conference on Antennas and Propagation (EuCAP 2013): Gothenburg, Sweden, 8 - 12 April 2013. Piscataway, NJ: IEEE, 2013Google Search
83 
Thierry T., Ludivine F., Laurent O., Valerie V., Jun. 2013, COTS-based modules for far-field radio frequency energy harvesting at 900MHz and 2.4GHz, in 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS), Paris, France, pp. 1-4DOI
84 
Alam S. B., Ullah M. S., Moury S., May 2013, Design of a low power 2.45 GHz RF energy harvesting circuit for rectenna, in 2013 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, pp. 1-4DOI
85 
Fan S., et al. , Sep. 2019, A 2.45-GHz Rectifier-Booster Regulator With Impedance Matching Converters for Wireless Energy Harvesting, IEEE Trans. Microw. Theory Tech., Vol. 67, No. 9, pp. 3833-3843DOI
86 
Wang C., Shinohara N., Mitani T., Apr. 2017, Study on 5.8-GHz Single-Stage Charge Pump Rectifier for Internal Wireless System of Satellite, IEEE Trans. Microw. Theory Tech., Vol. 65, No. 4, pp. 1058-1065DOI
87 
Bae J., et al. , Dec. 2017, High-efficiency rectifier (5.2 GHz) using a Class-FDickson charge pump, Microw. Opt. Technol. Lett., Vol. 59, No. 12, pp. 3018-3023DOI
88 
Bae J., et al. , Jul. 2019, 5.8 GHz High-Efficiency RF-DC Converter Based on Common-Ground Multiple-Stack Structure, Sensors, Vol. 19, No. 15, pp. 3257DOI
89 
Umeda T., Yoshida H., Sekine S., Fujita Y., Suzuki T., Otaka S., Jan. 2006, A 950-MHz Rectifier Circuit for Sensor Network Tags With 10-m Distance, IEEE J. Solid-State Circuits, Vol. 41, No. 1, pp. 35-41DOI
90 
Hongchin Lin , Kai-Hsun Chang , Shyh-Chyi Wong , 1999, Novel high positive and negative pumping circuits for low supply voltage, in ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), Orlando, FL, USA, Vol. 1, pp. 238-241DOI
91 
Hagerty J. A., Helmbrecht F. B., McCalpin W. H., Zane R., Popovic Z. B., Mar. 2004, Recycling Ambient Microwave Energy With Broad-Band Rectenna Arrays, IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, pp. 1014-1024DOI
92 
Ghovanloo M., Najafi K., Nov. 2004, Fully integrated wideband high-current rectifiers for inductively powered devices, IEEE J. Solid-State Circuits, Vol. 39, No. 11, pp. 1976-1984DOI
93 
Penella-López M. T., Gasulla-Forner M., 2011, Radiofrequency Energy Harvesting, in Powering Autonomous Sensors, Dordrecht: Springer Netherlands, pp. 125-147DOI
94 
Dickson J. F., Jun. 1976, On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique, IEEE J. Solid-State Circuits, Vol. 11, No. 3, pp. 374-378DOI
95 
Nintanavongsa P., Muncuk U., Lewis D. R., Chowdhury K. R., Mar. 2012, Design Optimization and Implementation for RF Energy Harvesting Circuits, IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 2, No. 1, pp. 24-33DOI
96 
Devi K. K. A., Din N. Md., Chakrabarty C. K., 2012, Optimization of the Voltage Doubler Stages in an RF-DC Convertor Module for Energy Harvesting, Circuits Syst., Vol. 03, No. 03, pp. 216-222DOI
97 
Marshall B. R., Morys M. M., Durgin G. D., Apr. 2015, Parametric analysis and design guidelines of RF-to-DC Dickson charge pumps for RFID energy harvesting, in 2015 IEEE International Conference on RFID (RFID), San Diego, CA, USA, pp. 32-39DOI
98 
Jabbar H., Song Young., Jeong T., Feb. 2010, RF energy harvesting system and circuits for charging of mobile devices, IEEE Trans. Consum. Electron., Vol. 56, No. 1, pp. 247-253DOI
99 
Kotani K., Sasaki A., Ito T., Nov. 2009, High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs, IEEE J. Solid-State Circuits, Vol. 44, No. 11, pp. 3011-3018DOI
100 
Yi J., Ki W.-H., Tsui C.-Y., Jan. 2007, Analysis and Design Strategy of UHF Micro-Power CMOS Rectifiers for Micro-Sensor and RFID Applications, IEEE Trans. Circuits Syst. Regul. Pap., Vol. 54, No. 1, pp. 153-166DOI