Mobile QR Code QR CODE

References

1 
M. Haziq, et al, “Challenges and Opportunities for High-Power and High-Frequency AlGaN/GaN High-Electron-Mobility Transistor (HEMT) Applications: A Review,” Micromachines, Vol. 13, No. 12, p. 2133, Dec., 2022.DOI
2 
H. Amano, et al, “The 2018 GaN power electronics roadmap,” J. Phys. D Appl. Phys., Vol. 51, p. 163001, Mar., 2018.DOI
3 
K. J. Chen, et al, “GaN-on-Si Power Technology: Devices and Applications,” IEEE trans. Eelctron Devices, Vol. 64, No. 3, pp. 779-795, Feb., 2017.DOI
4 
O. Ambacher, et al, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., Vol. 85, pp. 3222-3233, Mar., 1999.DOI
5 
M. Kanamura, et al, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High- k Gate Dielectrics,” IEEE Electron Device Lett., Vol. 31, No. 3, pp. 189-191, Feb., 2010.DOI
6 
W. H. Jang, et al, “Recess-Free E-Mode AlGaN/GaN MIS-HFET with Crystalline PEALD AlN Passivation Process,” Electronics, Vol. 12, No. 7, p. 1667, Mar., 2023.DOI
7 
Y. Cai, et al, “High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment,” IEEE Electron Device Lett., Vol. 26, No. 7, pp. 435-437, Jun., 2005.DOI
8 
Y. Zhou, et al, “p-GaN Gate Enhancement-Mode HEMT Through a High Tolerance Self-Terminated Etching Process,” IEEE J. Electron Devices I., Vol. 5, No. 5, pp. 340-346, Jul., 2017.DOI
9 
G. Greco, et al, “Review of technology for normally-off HEMTs with p-GaN gate,” Mater. Sci. Semicond. Proc., Vol. 78, pp. 96-106, May, 2018.DOI
10 
Y. Uemoto, et al, “Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation,” IEEE Trans. Electron Devices, Vol. 54, No. 12, pp. 3393-3399, Nov., 2007.DOI
11 
T. L. Wu, et al, “Forward Bias Gate Breakdown Mechanism in Enhancement-Mode p-GaN Gate AlGaN/GaN High-Electron Mobility Transistors,” IEEE Electron Device Lett., Vol. 39, No. 10, pp. 1001-1003, Aug., 2015.DOI
12 
M. Meneghini, et al, “Technology and Reliability of Normally-Off GaN HEMTs with p-Type Gate,” Energies, Vol. 10, No. 2, p. 153, Jan., 2017.DOI
13 
R. Wang, et al, “Evaluation on Temperature-Dependent Transient VT Instability in p-GaN Gate HEMTs under Negative Gate Stress by Fast Sweeping Characterization,” Micromachines, Vol. 13, No. 7, p. 1096, Jul., 2022.DOI
14 
L. Sayadi, et al, “Threshold Voltage Instability in p-GaN gate AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, Vol. 65, No. 6, pp. 2454-2460, Jun., 2018.DOI
15 
H. Wang, et al, “Maximizing the Performance of 650-V p-GaN Gate HEMTs: Dynamic RON Characterization and Circuit Design Considerations,” IEEE Trans. Power Electron., Vol. 32, No. 7, pp. 5539-5549, Jul., 2017.DOI
16 
M. Chae, et al, “Investigation of the Gate Degradation Induced by Forward Gate Voltage Stress in p-GaN Gate High Electron Mobility Transistors,” Micromachines, Vol. 14, No. 5, p. 977, Apr., 2023.DOI
17 
A. N. Tallarico, et al, “Investigation of the p-GaN Gate Breakdown in Forward Biased GaN-Based Power HEMTs,” IEEE Electron Device Lett., Vol. 38, No. 1, pp. 99-102, Jan., 2017.DOI
18 
GaN Systems Inc. GS-065-004-1-L Datasheet. 2022.URL
19 
Arno stockman, et al, “Gate Conduction Mechanisms and Lifetime Modeling of p-Gate AlGaN/GaN High-Electron-Mobility Transistors,” IEEE Trans. Electron Devices, Vol. 65, No. 12, pp. 5365-5372, Nov., 2018.DOI
20 
J. He, et al, “Frequency- and Temperature-Dependent Gate Reliability of Schottky-Type p -GaN Gate HEMTs,” IEEE Trans. Electron Devices, Vol. 66, No. 8, pp. 3453-3458, Jul., 2019.DOI
21 
I. Rossetto, et al, “Time-Dependent Failure of GaN-on-Si Power HEMTs With p-GaN Gate,” IEEE Trans. Electron Devices, Vol. 63, No. 6, pp. 2234-2339, Apr., 2016.DOI
22 
Y. Wu, et al, “Time-to-Breakdown Weibull Distribution of Thin Gate Oxide Subjected to Nanoscaled Constant-Voltage and Constant-Current Stresses,” IEEE Trans. Device Mater. Reliab., Vol. 8, No. 2, pp. 352-357, Jun., 2008.DOI
23 
M. Hua, et al, “Integration of LPCVD-SiNx gate dielectric with recessed-gate E-mode GaN MIS-FETs: Toward high performance, high stability and long TDDB lifetime,” IEEE International Electron Devices Meeting (IEDM), Feb., 2017.DOI
24 
T. L. Wu, et al, “Time dependent dielectric breakdown (TDDB) evaluation of PE-ALD SiN gate dielectrics on AlGaN/GaN recessed gate D-mode MIS-HEMTs and E-mode MIS-FETs,” IEEE International Symposium on Reliability Physics (IRPS), Jun., 2015.DOI
25 
J. W. Mcpherson, “Time dependent dielectric breakdown physics - Models revisted,” Microelectron. Reliab., Vol. 52, pp. 1753-1760, Jul., 2012.DOI
26 
S. Khan, S. Hamdioui, “Trends and Challenges of SRAM Reliability in the Nano-scale Era,” 5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Mar., 2010.DOI
27 
J. He et al, “Characterization and analysis of low-temperature time-to-failure behavior in forward-biased Schottky-type p-GaN gate HEMTs,” Appl. Phys. Lett., Vol. 116, p. 223502, Jun., 2020.DOI
28 
F. Masin, et al, “Positive temperature dependence of time-dependent breakdown of GaN-on-Si E-mode HEMTs under positive gate stress,” Appl. Phys. Lett., Vol. 115, p. 0521033, Jul., 2019.DOI
29 
R. Degraeve, et al, “A new model for the field dependence of intrinsic and extrinsic time-dependent dielectric breakdown,” IEEE Trans. Electron Devices, Vol. 45, No. 2, pp. 472-481, Feb., 1998.DOI
30 
G. Meneghesso, et al, “Reliability of power devices: Bias-induced threshold voltage instability and dielectric breakdown in GaN MIS-HEMTs,” IEEE International Workshop Integreated Reliability (IIRW), Apr., 2017.DOI
31 
I. Rossetoo, et al, “Field- and current-driven degradation of GaN-based power HEMTs with p-GaN gate: Dependence on Mg-doping level,” Microelectron. Reliab., Vol. 76-77, pp. 298-303, Sep., 2017.DOI
32 
A. Tajalli, et al, “Impact of sidewall etching on the dynamic performance of GaN-on-Si E-mode transistors,” Microelectron. Reliab., Vol. 88-90, pp. 572-576, Sep., 2018.DOI