Mobile QR Code QR CODE

References

1 
C.-T. Sah, “Characteristics of the metal-oxide-semiconductor transistors,” IEEE Trans. Electron Devices, Vol. 11, No. 7, pp. 324-345, 1964.DOI
2 
Q. Zhang, W. Zhao, and A. Seabaugh, “Low-subthreshold-swing tunnel transistors,” IEEE Electron Device Lett., Vol. 27, No. 4, pp. 297-300, 2006.DOI
3 
J. H. Kim, S. Kim, and B.-G. Park, “Double-gate TFET with vertical channel sandwiched by lightly doped Si,” IEEE Trans. Electron Devices, Vol. 66, No. 4, pp. 1656-1661, 2019.DOI
4 
A. C. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond CMOS logic,” Proc. IEEE, Vol. 98, No. 12, pp. 2095-2110, 2010.DOI
5 
R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, “Vertical Si-Nanowire $ n $-Type Tunneling FETs With Low Subthreshold Swing (≤ 50 [mV/decade] at Room Temperature,” IEEE Electron Device Lett., Vol. 32, No. 4, pp. 437-439, 2011.DOI
6 
W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., Vol. 28, No. 8, pp. 743-745, 2007.DOI
7 
N. Damrongplasit, C. Shin, S. H. Kim, R. A. Vega, and T.-J. K. Liu, “Study of random dopant fluctuation effects in germanium-source tunnel FETs,” IEEE Trans. Electron Devices, Vol. 58, No. 10, pp. 3541-3548, 2011.DOI
8 
A. Asenov, S. Kaya, and A. R. Brown, “Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness,” IEEE Trans. Electron Devices, Vol. 50, No. 5, pp. 1254-1260, 2003.DOI
9 
J. H. Kim, H. W. Kim, Y. S. Song, S. Kim, and G. Kim, “Analysis of current variation with work function variation in l-shaped tunnel-field effect transistor,” Micromachines, Vol. 11, No. 8, p. 780, 2020.DOI
10 
K. M. Choi, S. K. Kim, and W. Y. Choi, “Influence of number fluctuation and position variation of channel dopants and gate metal grains on tunneling field-effect transistors (TFETs),” J. Nanosci. Nanotechnol., Vol. 16, No. 5, pp. 5255-5258, 2016.DOI
11 
Y.-C. Yeo, T.-J. King, and C. Hu, “Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor tech-nology,” J. Appl. Phys., Vol. 92, No. 12, pp. 7266-7271, 2002.DOI
12 
H. Nam and C. Shin, “Study of high-k/metal-gate work-function variation using Rayleigh distribution,” IEEE Electron Device Lett., Vol. 34, No. 4, pp. 532-534, 2013.DOI
13 
G. Kim, J. H. Kim, J. Kim, and S. Kim, “Analysis of work-function variation effects in a tunnel field-effect transistor depending on the device structure,” Appl. Sci., Vol. 10, No. 15, p. 5378, 2020.DOI
14 
C. C. Hobbs et al., “Fermi-level pinning at the polysilicon/metal-oxide interface-Part II,” IEEE Trans. Electron Devices, Vol. 51, No. 6, pp. 978-984, 2004.DOI
15 
A. Ravindran, A. George, C. S. Praveen, and N. Kuruvilla, “Gate all around nanowire TFET with high ON/OFF current ratio,” Mater. Today Proc., Vol. 4, No. 9, pp. 10637-10642, 2017.DOI
16 
Y. Lee, H. Nam, J.-D. Park, and C. Shin, “Study of work-function variation for high- κ metal-gate Ge-Source tunnel field-effect transistors,” IEEE Trans. Electron Devices, vol. 62, no. 7, pp. 2143-2147, 2015.DOI
17 
H. F. Dadgour, K. Endo, V. K. De, and K. Banerjee, “Grain-orientation induced work function variation in nanoscale metal-gate transistors—Part II: Implications for process, device, and circuit design,” IEEE Trans. Electron Devices, Vol. 57, No. 10, pp. 2515-2525, 2010.DOI
18 
T. M. Mitchell and T. M. Mitchell, Machine learning, vol. 1, no. 9. McGraw-hill New York, 1997.URL
19 
J. Lim and C. Shin, “Machine learning (ML)-based model to characterize the line edge roughness (LER)-induced random variation in FinFET,” IEEE Access, Vol. 8, pp. 158237-158242, 2020.DOI
20 
Y. S. Bankapalli and H. Y. Wong, “TCAD augmented machine learning for semiconductor device failure troubleshooting and reverse engineering,” in 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2019, pp. 1-4.DOI
21 
Y.-C. Wu and Y.-R. Jhan, “Introduction of synopsys sentaurus TCAD simulation,” in 3D TCAD Simulation for CMOS Nanoeletronic Devices, Springer, 2018, pp. 1-17.DOI
22 
E. P. Gyftopoulos and J. D. Levine, “Work function variation of metals coated by metallic films,” J. Appl. Phys., Vol. 33, No. 1, pp. 67-73, 1962.DOI
23 
G.-B. Huang, “Learning capability and storage capacity of two-hidden-layer feedforward networks,” IEEE Trans. neural networks, Vol. 14, No. 2, pp. 274-281, 2003.DOI
24 
Z. Zhang, “Improved adam optimizer for deep neural networks,” in 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), 2018, pp. 1-2.DOI
25 
A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv Prepr. arXiv1803.08375, 2018.DOI
26 
H. W. Kim and J. H. Kim, “Study on the Influence of Drain Voltage on Work Function Variation Characteristics in Tunnel Field-effect Transistor,” J. Semicond. Technol. Sci., Vol. 20, No. 6, pp. 558-564, 2020.DOI
27 
L. De Michielis, L. Lattanzio, and A. M. Ionescu, “Understanding the superlinear onset of tunnel-FET output characteristic,” IEEE Electron Device Lett., Vol. 33, No. 11, pp. 1523-1525, 2012.DOI
28 
K. Bernstein, R. K. Cavin, W. Porod, A. Seabaugh, and J. Welser, “Device and architecture outlook for beyond CMOS switches,” Proc. IEEE, Vol. 98, No. 12, pp. 2169-2184, 2010.DOI