Mobile QR Code QR CODE

References

1 
K. Xiao, “Review of Quantum Computer Development”, Highlights in Science, Engineering and Technology, vol. 34, 2023.DOI
2 
F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith and M. A. Eriksson, “Silicon quantum electronics,” Rev. Mod. Phys., 85, 961, Jul. 2013.DOI
3 
M. Veldhorst, H. G. J. Eenink, C. H. Yang and A. S. Dzurak, “Silicon CMOS architecture for a spin-based quantum computer,” Nat. Commun., 8, 1766, 2017.DOI
4 
B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano and E. Charbon, “Cryo-CMOS Circuits and Systems for Quantum Computing Applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 1-13, Sep. 2018.DOI
5 
E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S. Visser, L. Song and R. M. Incandela, “Cryo-CMOS for quantum computing,” IEEE Electron Devices Meeting (IEDM), pp. 343-346, Dec. 2016.DOI
6 
S. Krinner, S. Storz, P. Kurpiers, P. Magnard, J. Heinsoo, R. Keller, J. Lütolf, C. Eichler and A. Wallraff, “Engineering cryogenic setups for 100-qubit scale superconducting circuit systems,” EPJ Quantum Technology, vol. 6, no. 2, 2019.DOI
7 
J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature, 430, 431-435, 2004.DOI
8 
M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol., 9, 981, 2014.DOI
9 
E. Vahapoglu, J. P. Slack-Smith, R. C. C. Leon, W. H. Lim, F. E. Hudson, T. Day, J. D. Cifuentes, T. Tanttu, C. H. Yang, A. Saraiva, N. V. Abrosimov, H.-J. Pohl, M. L. W. Thewalt, A. Laucht, A. S. Dzurak and J. J. Pla, “Coherent control of electron spin qubits in silicon using a global field”, npj Quantum Inf, vol. 8, no. 126, pp. 1-6, Nov. 2022.DOI
10 
D. Shim, “CMOS Diodes under Cryogenic Temperature and High Magnetic Field Environment,” Journal of Semiconductor Technology and Science, vol. 21, no. 5, Oct. 2021.DOI
11 
K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. New York: Wiley-Interscience/IEEE, 2006.URL
12 
F. De la Hidalga, M. Deen and E. Gutierrez, “Theoretical and Experimental Characterization of Self-Heating in Silicon Integrated Devices Operating at Low Temperatures,” IEEE IEEE Transactions on Electron Devices, vol. 47, no. 5, pp. 1098-1106, 2000.DOI
13 
J. W. Rohlf, Modern Physics from  to Z0, Wiley 1994.URL
14 
S. E. Swirhun and R. M. Swanson, “Temperature Dependence of Specific Contact Resistivity,” IEEE Electron Device Letters, vol. 7, no. 3, pp. 155-157, Mar. 1986.DOI
15 
M. Assen, “Review of Magnetoresistance and Hall Effect in Metals and Semiconductors,” Master thesis, Addis Ababa University, 2017.URL
16 
M. Mola, S. Hill, P. Goy and M. Gross, “Instrumentation for Millimeter-wave Magneto-electrodynamic Investigations of Low-Dimensional Conductors and Superconductors,” Rev. Sci. Inst., vol. 71, no. 1, pp. 186-200, Jan. 2000.DOI
17 
M. Awipi and S. Drews, “A Non-Destructive Method of Testing for Radiation Hardness of Integrated Circuits,” Proceedings of the IEEE Southeastcon 2000, pp. 349-353, Feb. 2000.DOI