Mobile QR Code QR CODE

References

1 
Y.-D. Chih et al.: “An 89TOPS/W and 16.3TOPS/mm2 All-Digital SRAM-Based Full-Precision Compute-In Memory Macro in 22nm for Machine-Learning Edge Applications,” IEEE International Solid-State Circuits Conference (2021) 252.DOI
2 
H. Fujiwara et al.: “A 5-nm 254-TOPS/W 221-TOPS/mm2 Fully-Digital Computing-in-Memory Macro Supporting Wide-Range Dynamic-Voltage-Frequency Scaling and Simultaneous MAC and Write,” IEEE International Solid-State Circuits Conference (2022) 186.DOI
3 
S. Ryu et al.: “BitBlade: Energy-efficient variable bit-precision hardware accelerator for quantized neural networks,” IEEE Journal of Solid-State Circuits (2022).DOI
4 
M. Nazemi et al.: “NullaNet: Training deep neural networks for reduced-memory-access inference,” arXiv (2018).DOI
5 
S. Biookaghazadeh et al., “Toward multi-FPGA acceleation of the neural networks,” ACM Journal on Emerging Technologies in Computing Systems (2021) 1.DOI
6 
D. Bankman et al., “An Always-On 3.8uJ/86% CIFAR-10 mixed-signal binary CNN accelerator with all memory on chip in 28-nm CMOS,” IEEE Journal of Solid-State Circuits (2018) 158.URL
7 
M. Rategari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks,” European conference on computer vision (2016).DOI
8 
A. Bulat et al., “XNOR-Net++: Improved Binary Neural Networks,” British Machine Vision Conference (2019).DOI
9 
B. Zhang et al.: “PIMCA: A programmable In-Memory Computing Accelerator for Energy-Efficient DNN Inference,” IEEE Journal of Solid-State Circuits (2022) 1436.DOI