Mobile QR Code QR CODE

References

1 
Z. Yusupov and M. Almaktar, ``Geothermal power generation,'' Geothermal energy, IntechOpen, 2021.URL
2 
Automotive Electronics Council. (Sep. 2014). AEC-Q100 RevH: Failure Mechanism Based Stress Test Qualification for Integrated Circuits. Accessed: Mar. 31, 2022. [Online]. Available: http://www.aecouncil.com/AECDocuments.htmlURL
3 
M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, ``A CMOS temperature sensor with a 3$\sigma$ inaccuracy of $\pm$0.1 $^\circ$C from $-55 ^\circ$C to $+125 ^\circ$C,'' IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805–2815, December 2005.DOI
4 
Z. Tang, Y. Fang, X.-P. Yu, Z. Shi, and N. Tan, ``A CMOS Temperature Sensor With Versatile Readout Scheme and High Accuracy for Multi-Sensor Systems,'' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 11, pp. 3821-3829, November 2018.DOI
5 
S. Jagtap, S. Rane, U. Mulik, and D. Amalnerkar, ``Thick film NTC thermistor for wide range of temperature sensing,'' Microelectronics International, vol. 24, no. 2, pp. 7-13, April 2007.DOI
6 
J.-S. Na, W. Shin, B.-C. Kwak, S.-K. Hong, and O.-K. Kwon, ``A CMOS-based temperature sensor with subthreshold operation for low-voltage and low-power on-chip thermal monitoring,'' Journal of Semiconductor Technology and Science, vol. 17, no. 1, pp. 29–34, February 2017.DOI
7 
S.-C. Lee and H. Chiueh, ``A 69 $\mu$W CMOS smart temperature sensor with an inaccuracy of $\pm$0.8$^\circ$C (3$\sigma$) from $-50 ^\circ$C to $150 ^\circ$C,'' Proc. of 2012 IEEE Sensors, IEEE, Taipei, Taiwan, pp. 1-4, 2012DOI
8 
S. Pan, C˛. Gürleyük, M. F. Pimenta, and K. A. A. Makinwa, ``10.3 A 0.12 mm$^2$ Wien-bridge temperature sensor with 0.1$^\circ$C (3$\sigma$) inaccuracy from $-40 ^\circ$C to 180$^\circ$C,'' Proc. of 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 184-186, 2019.DOI
9 
M. -K. Law, S. Lu, T. Wu, A. Bermak, P. -I. Mak, and R. P. Martins, ``A 1.1 $\mu$W CMOS Smart Temperature Sensor With an Inaccuracy of $\pm$0.2 $^\circ$C ( 3$\sigma$) for Clinical Temperature Monitoring,'' IEEE Sensors Journal, vol. 16, no. 8, pp. 2272-2281, April15, 2016.DOI
10 
B. Wang and M. -K. Law, ``Subranging BJT-Based CMOS Temperature Sensor with a $\pm$0.45$^\circ$C inaccuracy (3$\sigma$) from $-50 ^\circ$C to $180 ^\circ$C and a resolution-FoM of 7.2 pJ$\cdot$K$^2$ at $150 ^\circ$C,'' IEEE Journal of Solid-State Circuits, vol. 57, no. 12, pp. 3693-3703, December 2022.DOI
11 
N. G. Toth, Z. Tang, T. Someya, S. Pan, and K. A. A. Makinwa, ``23.7 A BJT-based temperature sensor with $\pm$0.1$^\circ$C (3$\sigma$) inaccuracy from $-55 ^\circ$C to $125 ^\circ$C and a 0.85pJ$\cdot$K$^2$ resolution FoM using continuous-time readout,'' Proc. of 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 358-360, 2023.DOI
12 
K. Souri and K. Makinwa, ``A 40$\mu$W CMOS temperature sensor with an inaccuracy of $\pm$0.4$^\circ$C (3$\sigma$) from $-55 ^\circ$C to $200 ^\circ$C,'' Proc. of 2013 Proceedings of the ESSCIRC (ESSCIRC), Bucharest, Romania, pp. 221-224, 2013.DOI
13 
B. Yousefzadeh and K. A. A. Makinwa, ``A BJT-based temperature-to-digital converter with a $\pm 0.25 ^\circ$C 3 $\sigma$-inaccuracy from $-40 ^\circ$C to $+180 ^\circ$C using heater-assisted voltage calibration,'' IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 369-377, February 2020.DOI
14 
M. A. P. Pertijs and J. H. Huijsing, Precision Temperature Sensors in CMOS Technology, Springer, Dordrecht, The Netherlands, 2006.URL
15 
J.-H. Boo, K.-I. Cho, H.-J. Kim, J.-G. Lim, Y.-S. Kwak, and S.-H. Lee, ``A single-trim switched capacitor CMOS bandgap reference with a 3$\sigma$ inaccuracy of $+0.02$%, $-0.12$% for battery-monitoring applications,'' IEEE Journal of Solid-State Circuits, vol. 56, no. 4, pp. 1197-1206, April 2021.DOI
16 
A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa, J. H. Huijsing, and G. C. M. Meijer, ``Low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of $\pm 0.25 ^\circ$C ($\pm$3$\sigma$) from $-70 ^\circ$C to $130 ^\circ$C,'' IEEE Sensors Journal, vol. 13, no. 5, pp. 1840-1848, May 2013.DOI
17 
X. Pu, M. Ash, K. Nagaraj, J. Park, S. Vu, and P. Kimelman, ``An embedded 65 nm CMOS remote temperature sensor With digital beta correction and series resistance cancellation achieving an inaccuracy of $0.4 ^\circ$C (3$\sigma$) from $- 40 ^\circ$C to $130 ^\circ$C,'' IEEE Journal of Solid-State Circuits, vol. 50, no. 9, pp. 2127-2137, September 2015.DOI
18 
B. Yousefzadeh, S. H. Shalmany, and K. A. A. Makinwa, ``A BJT-based temperature-to-digital converter with $\pm$60 mK (3$\sigma$) inaccuracy from $-55 ^\circ$C to $+125 ^\circ$C in 0.16-$\mu$m CMOS,'' IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 1044-1052, April 2017.DOI
19 
Z. Tang, S. Pan, M. Grubor, and K. A. A. Makinwa, ``A sub-1 V capacitively biased BJT-based temperature sensor with an inaccuracy of $\pm 0.15 ^\circ$C (3$\sigma$) from $-55 ^\circ$C to $125 ^\circ$C,'' IEEE Journal of Solid-State Circuits, vol. 58, no. 12, pp. 3433-3441, December 2023.DOI
20 
R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, ``Design-oriented estimation of thermal noise in switched-capacitor circuits,'' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 11, pp. 2358-2368, November 2005.DOI
21 
C. C. Enz and G. C. Temes, ``Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,'' Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, November 1996.DOI
22 
J. Márkus, J. Silva, and G. C. Temes, ``Theory and applications of incremental 16 converters,'' IEEE Transactions on Circuits and Systems I: Regular Paper, vol. 51, no. 4, pp. 678–690, April 2004.DOI