Mobile QR Code QR CODE

References

1 
J. Serey, M. Alfaro, G. Fuertes, M. Varhas, C. Durán, R. Ternero, R. Rivera, and J. Sabattin, ``Pattern recognition and deep learning technologies, enablers of Industry 4.0, and their role in engineering research,'' Symmetry, vol. 15, no. 2, 535, 2023.DOI
2 
J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, ``Deep learning for smart manufacturing: Methods and applications,'' Journal of Manufacturing Systems, vol. 48, pp. 144-156, 2018.DOI
3 
S. Sundaram and A. Zeid, ``Artificial intelligence-based smart quality inspection for manufacturing,'' Micromachining, vol. 14, no. 2, 570, 2023.DOI
4 
E. Baran and T. K. Polat, ``Classification of Industry 4.0 for total quality management: A review,'' Sustainability, vol. 14, no. 6, 3329, 2022.DOI
5 
T.P. Nguyen, S. Choi, S.J. Park, and J. Yoon, ``Inspecting method for defective casting products with convolutional neural network (CNN),'' International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 8, pp. 583-594, 2021.DOI
6 
F. Pernkopf and P. O'Leary, ``Visual inspection of machined metallic high-precision surfaces,'' EURASIP Journal on Advances in Signal Processing, vol. 2002, pp. 1-12, 2002.DOI
7 
X. Jiang, P. Scott, and D. Whitehouse, ``Wavelets and their applications for surface metrology,'' CIRP Annals, vol. 57, no. 1, pp. 555-558, 2008.DOI
8 
D. H. Harris, ``The nature of industrial inspection,'' Human Factors, vol. 11, no. 2, pp. 139-148, 1969.DOI
9 
J. E. See, ``Visual inspection reliability for precision manufactured parts,'' Human Factors, vol. 57, no. 8, pp. 1427-1442, 2015.DOI
10 
D. Weimer, B. Scholz-Reiter, and M. Shpitalni, ``Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection,'' CIRP Annals, vol. 65, no. 1, pp. 417-420, 2016.DOI
11 
F. Riaz, K. Kamal, T. Zafar, and R. Qayyum, ``An inspection approach for casting defects detection using image segmentation,'' Proc. of 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), pp. 101-105, 2017.DOI
12 
M. Ferguson, R. Ak, Y.-T. T. Lee, and K. H. Law, ``Automatic localization of casting defects with convolutional neural networks,'' Proc. of 2017 IEEE International Conference on Big Data (Big Data), pp. 1726-1735, December 2017.DOI
13 
M. I. Jordan and T. M. Mitchell, ``Machine learning: Trends, perspectives, and prospects,'' Science, vol. 349, no. 6245, pp. 255-260, 2015.DOI
14 
H. Xie and Z Wu, ``A robust fabric defect detection method based on improved RefineDet,'' Sensors, vol. 15, no. 15, 2020.DOI
15 
P. Murray, E. Yakushina, S. Marshall, and W. Lon, ``Automated microstructural analysis of titanium alloys using digital image processing,'' IOP Conference Series: Materials Science and Engineering, vol. 179, 012011, 2017.DOI
16 
M. M. Islam, A. A. Mintoo, and A. S. M. Saimon, ``Enhancing textile quality control with IoT sensors: A case study of automated defect detection, Global Mainstream Journal, vol. 1, no. 1, pp. 19-30, 2024.DOI
17 
J. Breitenbach, I. Eckert, V. Mahal, H. Baumgartl, and R. Buettner, ``Automated defect detection of screws in the manufacturing industry using convolutional neural networks,'' Proc. of the 55th Hawaii International Conference on System Sciences, 2022.DOI
18 
L. Song, X. Li, Y. Yang, X. Zhu, Q. Guo, and H. Yang, ``Detection of micro-defects on metal screw surfaces based on deep convolutional neural networks,'' Sensors, vol. 18, no. 11, 2018.DOI
19 
Z. Liu, B. Tian, X. Li, C. Li, and Y. Dong, ``Saliency-based fabric defect detection network with feature pyramid learning and refinement,'' Proc. of Fourteenth International Conference on Graphics and Image Processing (ICGIP 2022), vol. 12705, 127050N, 2023.DOI
20 
S. Zhou, Y. Chen, D. Zhang, J. Xie, and Y. Zhou, ``Classification of surface defects on steel sheet using convolutional neural networks,'' Materiali in Tehnologije/Materials and Technology, vol. 51, no. 1, pp. 123-131, 2017.DOI
21 
A. S˛eker, K. A. Peker, A. G. Yüksek, and E. Delibas, ``Fabric defect detection using deep learning,'' Proc. of 2016 24th Signal Processing and Communication Application Conference (SIU), IEEE, pp. 1437-1440, 2016.DOI
22 
S.-H. Huang and Y.-C Pan, ``Automated visual inspection in the semiconductor industry: A survey,'' Computers in Industry, vol. 66, pp. 1-10, 2015.DOI
23 
Y. Qiao and L. Xing, ``Automatic classification method for Oracle images based on deep learning,'' IEIE Transactions on Smart Processing and Computing, vol. 12, no. 2, pp. 87-96, April 2023.DOI
24 
S. P. Yadav, ``Vision-based detection, tracking, and classification of vehicles,'' IEIE Transactions on Smart Processing and Computing, vol. 9, no. 6, pp. 427-434, December 2020.DOI
25 
M. N. Nguyen and T. Nguyen, ``Deep learning approaches to human gait pattern classification based on MEMS sensors,'' IEIE Transactions on Smart Processing and Computing, vol. 9, no. 4, pp. 184-292, August 2020.DOI
26 
J. He, L. Li, J. Xu, and C. Zheng, ``ReLU deep neural networks and linear finite elements,'' Journal of Computational Mathematics, vol. 38, no. 3, pp. 502-527, July 2018.DOI
27 
S. Karen and Z. Andrew, ``Very deep convolutional networks roe large-scale image recognition,'' arXiv preprint arXiv:1409.1556, 2014.DOI
28 
K. He, X. Zhang, S Ren, and J. Sun, ``Deep residual learning for image recognition,'' Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.DOI
29 
A. Dosovitskiy, ``An image is worth 16x16 words: Transformers for image recognition at scale,'' arXiv preprint arXiv:2010.11929, 2020.DOI
30 
Y. F. Yang and M. Sun, ``Semiconductor defect detection by hybrid classical-quantum deep learning,'' Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2323-2332, 2022.DOI
31 
D. Ujalambkar, C. Kulkarni, V. Navale, and N. P. Sable, ``Industrial product surface defect detection using CNN: A deep learning approach,'' Panamerican Mathematical Journal, vol. 34, no. 3, 2024DOI
32 
S. Arikan, K. Varanasi, and D. Stricker, ``Surface defect classification in real-time using convolutional neural networks,'' arXiv preprint arXiv:1904.04671, 2019.DOI
33 
B. Devika and N. George, ``Convolutional neural network for semiconductor wafer defect detection,'' Proc. of 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1-6, 2019.DOI
34 
J. Yang, S. Li, Z. Wang, H. Dong, J. Wang, and S. Tang, ``Using deep learning to detect defects in manufacturing: A comprehensive survey and current challenges,'' Materials, vol. 13, no. 24, 5755, 2020.DOI