Mobile QR Code QR CODE

References

1 
A. Biswas and A. M. Ionescu, ``1T capacitor-less DRAM cell based on asymmetric tunnel FET design,'' IEEE Journal of the Electron Devices Society, vol. 3, no. 3, pp. 217-222, May 2015.DOI
2 
R. K. Nirala, A. S. Roy, S. Semwal, N. Rai, and A. Kranti, ``Architectural evaluation of programmable transistor-based capacitorless DRAM for high-speed system-on-chip applications,'' Japanese Journal of Applied Physics, vol. 62, no. 1040, January 2023.DOI
3 
S. H. Lee, J. Park, Y. J. Yoon, and I. M. Kang, ``Capacitorless one-transistor dynamic random-access memory with novel mechanism: Self-refreshing,'' Nanomaterials, vol. 14, no. 2, January 2024.DOI
4 
M. S. Cho, H. J. Mun, S. H. Lee, J. Jang, J.-H. Bae, and I. M. Kang, ``Simulation of capacitorless dynamic random access memory based on junctionless FinFETs using grain boundary of polycrystalline silicon,'' Applied Physics A, vol. 126, p. 943, November 2020.DOI
5 
E. Yoshida and T. Tanaka, ``A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory,'' IEEE Transactions on Electron Devices, vol. 53, no. 4, pp. 692-697, April 2006.DOI
6 
S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, ``A capacitor-less 1T-DRAM cell,'' IEEE Electron Device Letters, vol. 23, no. 2, pp. 85-87, February 2002.DOI
7 
C. Hu, T.-J. King, and C. Hu, ``A capacitorless double-gate DRAM cell,'' IEEE Electron Device Letters, vol. 23, no. 6, pp. 345-347, June 2002.DOI
8 
J.-T. Lin, W.-H. Lee, P.-H. Lin, S. W. Haga, Y.-R. Chen, and A. Kranti, ``A new electron bridge channel 1T-DRAM employing underlap region charge storage,'' IEEE Journal of the Electron Devices Society, vol. 5, no. 1, pp. 59-63, January 2017.DOI
9 
J. G. Fossum, Z. Lu, and V. P. Trivedi, ``New insights on `capacitorless' floating-body DRAM cells,'' IEEE Electron Device Letters, vol. 28, no. 6, pp. 513-516, June 2007.DOI
10 
M. G. Ertosun and K. C. Saraswat, ``Investigation of capacitorless double-gate single-transistor DRAM: With and without quantum well,'' IEEE Transactions on Electron Devices, vol. 57, no. 3, pp. 608-613, March 2010.DOI
11 
H. R. Ansari and J. Singh, ``Capacitorless 2T-DRAM for higher retention time and sense margin,'' IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 902-906, March 2020.DOI
12 
J. S. Shin, H. Choi, H. Bae, J. Jang, D. Yun, E. Hong, D. H. Kim, and D. M. Kim, ``Vertical-gate Si/SiGe double-HBT-based capacitorless 1T DRAM cell for extended retention time at low latch voltage,'' IEEE Electron Device Letters, vol. 33, no. 2, pp. 134-136, February 2012.DOI
13 
J. H. Seo, Y. J. Yoon, E. Yu, W. Sun, H. Shin, I. M. Kang, J. H. Lee, and S. Cho, ``Fabrication and characterization of a thin-body poly-Si 1T DRAM with charge-trap effect,'' IEEE Electron Device Letters, vol. 40, no. 4, pp. 566-569, April 2019.DOI
14 
Y. J. Yoon, J. S. Lee, D.-S. Kim, S. H. Lee, and I. M. Kang, ``One-transistor dynamic random-access memory based on gate-all-around junction-less field-effect transistor with a Si/SiGe heterostructure,'' Electronics, vol. 9, no. 12, 2134, December 2020.DOI
15 
Z. Lu, J. G. Fossum, and Z. Zhou, ``A Floating-body/gate DRAM cell upgraded for long retention time,'' IEEE Electron Device Letters, vol. 32, no. 6, pp. 731-733, June 2011.DOI
16 
W. Kwon and T.-J. K. Liu, ``A highly scalable capacitor-less cell having a doubly gated vertical channel,'' Japanese Journal of Applied Physics, vol. 49, 04DD04, April 2010.DOI
17 
W. Lee and W. Y. Choi, ``A novel capacitorless 1T DRAM cell for data retention time improvement,'' IEEE Transactions on Nanotechnology, vol. 10, no. 3, pp. 462-466, May 2011.DOI
18 
S. H. Lee, Y. J. Yoon, J. H. Seo, M. S. Cho, J. Park, H. D. An, S. R. Min, G. U. Kim, and I. M. Kang, ``Effect of work-function variation on transfer characteristics and memory performances for gate-all-around JLFET based capacitorless DRAM,'' Journal of Semiconductor Technology and Science, vol. 21, no. 6, pp. 381-389, December 2021.DOI
19 
M. A. Riyadi, Z. A. F. M. Napiah, J. E. Suseno, I. Saad, and R. Ismail, ``Body doping influence in vertical MOSFET design,'' Proc. of 2009 Innovative Technologies in Intelligent Systems and Industrial Applications, Kuala Lumpur, Malaysia, pp. 25-26, July 2009.DOI
20 
K. H. Kim, K. M. Kim, Y. H. Kim, J. B. Im, G. H. Choi, I. M. Kang, and Y. J. Yoon, ``Design optimization of capacitor-less DRAM using zero-temperature coefficient point,'' Journal of the Institute of Korean Electrical and Electronics Engineers, vol. 28, no. 3, pp. 369-374, September 2024.DOI
21 
S. H. Lee, W. D. Jang, Y. J. Yoon, J. H. Seo, H. J. Mun, M. S. Cho, J. Jang, J. H. Bae, and I. M. Kang, ``Polycrystalline-silicon-MOSFET-based capacitorless DRAM with grain boundaries and its performances,'' IEEE Access, vol. 9, pp. 50281-50290, March 2021.DOI
22 
S. H. Lee, J. Park, S. R. Min, G. U. Kim, J. Jang, J. H. Bae, S. H. Lee, and I. M. Kang, ``3-D stacked polycrystalline-silicon-MOSFET-based capacitorless DRAM with superior immunity to grain-boundary's influence,'' Scientific Reports, vol. 12, 14455, August 2022.DOI
23 
M. H. R. Ansari, N. Navlakha, J. Y. Lee, and S. Cho, ``Double-gate junctionless 1T DRAM with physical barriers for retention improvement,'' IEEE Transactions on Electron Devices, vol. 67, no. 4, pp. 1471-1479, April 2020.DOI
24 
Y. J. Yoon, J. H. Seo, and I. M. Kang, ``Capacitorless one-transistor dynamic random-access memory based on asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor with n-doped boosting layer and drain-underlap structure,'' Japanese Journal of Applied Physics, vol. 57, 04FG03, February 2018.DOI
25 
C. Navarro, S. Navarro, C. Marquez, L. Donetti, C. Sampedro, S. Karg, H. Riel, and F. Gamiz, ``InGaAs capacitor-less DRAM cells TCAD demonstration,'' IEEE Journal of the Electron Devices Society, vol. 6, pp. 884-892, July 2018.DOI
26 
J. H. Bae, J. W. Back, M. W. Kwon, J. H. Seo, K. Yoo, S. Y. Woo, K. Park, B. G. Park, and J. H. Lee, ``Characterization of a Capacitorless DRAM Cell for Cryogenic Memory Applications,'' IEEE Electron Device Letters, vol. 40, no. 10, pp. 1614-1617, Oct. 2019.DOI
27 
Y. J. Yoon, J. H. Seo, M. S. Cho, B. G. Kim, S. H. Lee, and I. M. Kang, ``Capacitorless one-transistor dynamic random access memory based on double-gate GaAs junctionless transistor,'' Japanese Journal of Applied Physics, vol. 56, 06GF01, April 2017.DOI
28 
Z. D. Prijić, S. S. Dimitrijev, and N. D. Stojadinović, ``The determination of zero temperature coefficient point in CMOS transistors,'' Microelectronics Reliability, vol. 32, no. 6, pp. 769-773, June 1992.DOI
29 
A. A. Osman, M. A. Osman, N. S. Dogan, and M. A. Imam, ``Zero-temperature-coefficient biasing point of partially depleted SOI MOSFET's,'' IEEE Transactions on Electron Devices, vol. 42, no. 9, pp. 1709-1711, September 1995.DOI
30 
L. M. Camillo, J. A. Martino, E. Simoen, and C. Claeys, ``The temperature mobility degradation influence on the zero temperature coefficient of partially and fully depleted SOI MOSFETs,'' Microelectronics Journal, vol. 37, no. 9, pp. 952-957, September 2006.DOI
31 
T. H. Tan and A. K. Goel, ``Zero-temperature-coefficient biasing point of a fully-depleted SOI MOSFET,'' Microwave and Optical Technology Letters, vol. 37, no. 5, pp. 366-370, April 2003.DOI
32 
Y. Wenger and B. Meinerzhagen, ``Low-voltage current and voltage reference design based on the MOSFET ZTC effect,'' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 9, pp. 3445-3456, September 2019.DOI
33 
S. B. Chiah, X. Zhou, and L. Yuan, ``Compact zero-temperature coefficient modeling approach for MOSFETs based on unified regional modeling of surface potential,'' IEEE Transactions on Electron Devices, vol. 60, no. 7, pp. 2164-2170, July 2013.DOI