Mobile QR Code QR CODE

References

[1]

A. Biswas and A. M. Ionescu, “1T Capacitor-Less DRAM Cell Based on Asymmetric Tunnel FET Design,” IEEE Journal of the Electron Devices Society, Vol. 3, No. 3, pp. 217–222, May 2015. [CrossRef]

[2]

R. K. Nirala, A. S. Roy, S. Semwal, N. Rai, and A. Kranti, “Architectural evaluation of programmable transistor-based capacitorless DRAM for high-speed system-on-chip applications,” Japanese Journal of Applied Physics, Vol. 62, No. 1040, Jan. 2023. [CrossRef]

[3]

S. H. Lee, J. Park, Y. J. Yoon, and I. M. Kang, “Capacitorless One-Transistor Dynamic Random-Access Memory with Novel Mechanism: Self-Refreshing,” Nanomaterials, Vol. 14, No. 2, Jan. 2024. [CrossRef]

[4]

M. S. Cho, H. J. Mun, S. H. Lee, J. Jang, J.-H. Bae, and I. M. Kang, “Simulation of capacitorless dynamic random access memory based on junctionless FinFETs using grain boundary of polycrystalline silicon,” Applied Physics A, Vol. 126, p. 943, Nov. 2020. [CrossRef]

[5]

E. Yoshida and T. Tanaka, “A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory,” IEEE Transactions on Electron Devices, Vol. 53, No. 4, pp. 692–697, Apr. 2006. [CrossRef]

[6]

S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A capacitor-less 1T-DRAM cell,” IEEE Electron Device Letters, Vol. 23, No. 2, pp. 85–87, Feb. 2002. [CrossRef]

[7]

C. Hu, T.-J. King, and C. Hu, “A capacitorless double-gate DRAM cell,” IEEE Electron Device Letters, Vol. 23, No. 6, pp. 345–347, Jun. 2002. [CrossRef]

[8]

J.-T. Lin, W.-H. Lee, P.-H. Lin, S. W. Haga, Y.-R. Chen, and A. Kranti, “A New Electron Bridge Channel 1T-DRAM Employing Underlap Region Charge Storage,” IEEE Journal of the Electron Devices Society, Vol. 5, No. 1, pp. 59–63, Jan. 2017. [CrossRef]

[9]

] J. G. Fossum, Z. Lu, and V. P. Trivedi, “New Insights on 'Capacitorless' Floating-Body DRAM Cells,” IEEE Electron Device Letters, Vol. 28, No. 6, pp. 513–516, Jun. 2007. [CrossRef]

[10]

M. G. Ertosun and K. C. Saraswat, “Investigation of Capacitorless Double-Gate Single-Transistor DRAM: With and Without Quantum Well,” IEEE Transactions on Electron Devices, Vol. 57, No. 3, pp. 608–613, Mar. 2010. [CrossRef]

[11]

Md. H. R. Ansari and J. Singh, “Capacitorless 2T-DRAM for Higher Retention Time and Sense Margin,” IEEE Transactions on Electron Devices, Vol. 67, No. 3, pp. 902–906, Mar. 2020. [CrossRef]

[12]

J. S. Shin, H. Choi, H. Bae, J. Jang, D. Yun, E. Hong, D. H. Kim, and D. M. Kim, “Vertical-Gate Si/SiGe Double-HBT-Based Capacitorless 1T DRAM Cell for Extended Retention Time at Low Latch Voltage,” IEEE Electron Device Letters, Vol. 33, No. 2, pp. 134–136, Feb. 2012. [CrossRef]

[13]

J. H. Seo, Y. J. Yoon, E. Yu, W. Sun, H. Shin, I. M. Kang, J. H. Lee, and S. Cho, “Fabrication and Characterization of a Thin-Body Poly-Si 1T DRAM With Charge-Trap Effect,” IEEE Electron Device Letters, Vol. 40, No. 4, pp. 566–569, Apr. 2019. [CrossRef]

[14]

Y. J. Yoon, J. S. Lee, D.-S. Kim, S. H. Lee, and I. M. Kang, “One-Transistor Dynamic Random-Access Memory Based on Gate-All-Around Junction-Less Field-Effect Transistor with a Si/SiGe Heterostructure,” Electronics, Vol. 9, No. 12, p. 2134, Dec. 2020. [CrossRef]

[15]

Z. Lu, J. G. Fossum, and Z. Zhou, “A Floating-Body/Gate DRAM Cell Upgraded for Long Retention Time,” IEEE Electron Device Letters, Vol. 32, No. 6, pp. 731–733, Jun. 2011. [CrossRef]

[16]

W. Kwon and T.-J. K. Liu, “A Highly Scalable Capacitor-Less Cell Having a Doubly Gated Vertical Channel,” Japanese Journal of Applied Physics, Vol. 49, p. 04DD04, Apr. 2010. [CrossRef]

[17]

W. Lee and W. Y. Choi, “A Novel Capacitorless 1T DRAM Cell for Data Retention Time Improvement,” IEEE Transactions on Nanotechnology, Vol. 10, No. 3, pp. 462–466, May 2011. [CrossRef]

[18]

S. H. Lee, Y. J. Yoon, J. H. Seo, M. S. Cho, J. Park, H. D. An, S. R. Min, G. U. Kim, and I. M. Kang, “Effect of Work-function Variation on Transfer Characteristics and Memory Performances for Gate-all-around JLFET based Capacitorless DRAM,” Journal of Semiconductor Technology and Science, Vol. 21, No. 6, pp. 381–389, Dec. 2021. [CrossRef]

[19]

M. A. Riyadi, Z. A. F. M. Napiah, J. E. Suseno, I. Saad, and R. Ismail, “Body doping influence in vertical MOSFET design,” 2009 Innovative Technologies in Intelligent Systems and Industrial Applications, Kuala Lumpur, Malaysia, pp. 25-26, Jul. 2009. [CrossRef]

[20]

K. H. Kim, K. M. Kim, Y. H. Kim, J. B. Im, G. H. Choi, I. M. Kang, and Y. J. Yoon, “Design Optimization of Capacitor-less DRAM using Zero-Temperature Coefficient Point,” Journal of the Institute of Korean Electrical and Electronics Engineers, Vol. 28, No. 3, pp. 369–374, Sep. 2024. [CrossRef]

[21]

S. H. Lee, W. D. Jang, Y. J. Yoon, J. H. Seo, H. J. Mun, M. S. Cho, J. Jang, J. H. Bae, and I. M. Kang, “Polycrystalline-Silicon-MOSFET-Based Capacitorless DRAM With Grain Boundaries and Its Performances,” IEEE Access, Vol. 9, pp. 50281–50290, Mar. 2021. [CrossRef]

[22]

S. H. Lee, J. Park, S. R. Min, G. U. Kim, J. Jang, J. H. Bae, S. H. Lee, and I. M. Kang, “3-D stacked polycrystalline-silicon-MOSFET-based capacitorless DRAM with superior immunity to grain-boundary’s influence,” Scientific Reports, Vol. 12, p. 14455, Aug. 2022. [CrossRef]

[23]

M. H. R. Ansari, N. Navlakha, J. Y. Lee, and S. Cho, “Double-Gate Junctionless 1T DRAM With Physical Barriers for Retention Improvement,” IEEE Transactions on Electron Devices, Vol. 67, No. 4, pp. 1471–1479, Apr. 2020. [CrossRef]

[24]

Y. J. Yoon, J. H. Seo, and I. M. Kang, “Capacitorless one-transistor dynamic random-access memory based on asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor with n-doped boosting layer and drain-underlap structure,” Japanese Journal of Applied Physics, Vol. 57, p. 04FG03, Feb. 2018. [CrossRef]

[25]

C. Navarro, S. Navarro, C. Marquez, L. Donetti, C. Sampedro, S. Karg, H. Riel, and F. Gamiz, “InGaAs Capacitor-Less DRAM Cells TCAD Demonstration,” IEEE Journal of the Electron Devices Society, Vol. 6, pp. 884–892, Jul. 2018. [CrossRef]

[26]

J. H. Bae, J. W. Back, M. W. Kwon, J. H. Seo, K. Yoo, S. Y. Woo, K. Park, B. G. Park, and J. H. Lee, “Characterization of a Capacitorless DRAM Cell for Cryogenic Memory Applications,” IEEE Electron Device Letters, Vol. 40, No. 10, pp. 1614–1617, Oct. 2019. [CrossRef]

[27]

Y. J. Yoon, J. H. Seo, M. S. Cho, B. G. Kim, S. H. Lee, and I. M. Kang, “Capacitorless one-transistor dynamic random access memory based on double-gate GaAs junctionless transistor,” Japanese Journal of Applied Physics, Vol. 56, p. 06GF01, Apr. 2017. [CrossRef]

[28]

Z. D. Prijić, S. S. Dimitrijev, and N. D. Stojadinović, “The determination of zero temperature coefficient point in CMOS transistors,” Microelectronics Reliability, Vol. 32, No. 6, pp. 769–773, Jun. 1992. [CrossRef]

[29]

A. A. Osman, M. A. Osman, N. S. Dogan, and M. A. Imam, “Zero-temperature-coefficient biasing point of partially depleted SOI MOSFET's,” IEEE Transactions on Electron Devices, Vol. 42, No. 9, pp. 1709–1711, Sep. 1995. [CrossRef]

[30]

L. M. Camillo, J. A. Martino, E. Simoen, and C. Claeys, “The temperature mobility degradation influence on the zero temperature coefficient of partially and fully depleted SOI MOSFETs,” Microelectronics Journal, Vol. 37, No. 9, pp. 952–957, Sep. 2006. [CrossRef]

[31]

T. H. Tan and A. K. Goel, “Zero-temperature-coefficient biasing point of a fully-depleted SOI MOSFET,” Microwave and Optical Technology Letters, vol. 37, no. 5, pp. 366–370, Apr. 2003. [CrossRef]

[32]

Y. Wenger and B. Meinerzhagen, “Low-Voltage Current and Voltage Reference Design Based on the MOSFET ZTC Effect,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 66, No. 9, pp. 3445–3456, Sep. 2019. [CrossRef]

[33]

S. B. Chiah, X. Zhou, and L. Yuan, “Compact Zero-Temperature Coefficient Modeling Approach for MOSFETs Based on Unified Regional Modeling of Surface Potential,” IEEE Transactions on Electron Devices, Vol. 60, No. 7, pp. 2164–2170, Jul. 2013. [CrossRef]