Mobile QR Code QR CODE

References

1 
S. Ryu and J.-J. Kim, ``High-performance sparsity-aware NPU with reconfigurable comparator-multiplier architecture,'' Journal of Semiconductor Technology and Science, vol. 24, no. 6, pp. 572-577, 2024.DOI
2 
H.-T. Kung, ``Why systolic architectures?'' Computer, vol. 15, no. 1, pp. 37-46, 1982.DOI
3 
N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a tensor processing unit,” Proc. of 44th Annual International Symposium on Computer Architecture (ISCA), pp. 1-12, 2017.DOI
4 
F. Yu, Z. Qin, C. Liu, D. Wang, and X. Chen, ``REIN the RobuTS: Robust DNN-based image recognition in autonomous driving systems,'' IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 6, pp. 1258-1271, 2020.DOI
5 
H. A. Glory, C. Vigneswaran, S. S. Jagtap, R. Shruthi, G. Hariharan, and V. S. S. Sriram, ``AHW-BGOA-DNN: A novel deep learning model for epileptic seizure detection,'' Neural Computing and Applications, vol. 33, pp. 6065- 6093, 2021.DOI
6 
S. J. Yoon, T. Talluri, A. Angani, H. T. Chung, and K. J. Shin, ``Development of battery management system with PCM using neural network based aging algorithm for electric vehicle,'' IEIE Transactions on Smart Processing and Computing, vol. 14, no. 2, pp. 280-296, 2025.DOI
7 
S. S. Sahoo, A. Kumar, and B. Veeravalli, ``Design and evaluation of reliability-oriented task re-mapping in MP-SoCs using time-series analysis of intermittent faults,'' Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 798-803, 2016.DOI
8 
S. Borkar, ``Design perspectives on 22nm CMOS and beyond,'' Proc. of 46th Annual Design Automation Conference (DAC), pp. 93-94, 2009.DOI
9 
C. Constantinescu, ``Trends and challenges in VLSI circuit reliability,'' IEEE Micro, vol. 23, no. 4, pp. 14-19, 2003.DOI
10 
H. Nan and K. Choi, ``High performance, low cost, and robust soft error tolerant latch designs for nanoscale CMOS technology,'' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 7, pp. 1445-1457, 2012.DOI
11 
J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori, and N. Wehn, ``Reliable on-chip systems in the nano-era: Lessons learnt and future trends,'' Proc. of 50th Annual Design Automation Conference (DAC), pp. 1- 10, 2013.DOI
12 
H. Lee, H.-J. Lee, and H. Kim, ``A read disturbance tolerant phase change memory system for CNN inference workloads,'' Journal of Semiconductor Technology and Science, vol. 22, no. 4, pp. 216-223, 2022.DOI
13 
M. Pandey and A. Islam, ``Radiation tolerant by design 12-transistor static random access memory,'' Journal of Semiconductor Technology and Science, vol. 24, no. 5, pp.410-423, 2024.DOI
14 
J. J. Zhang, K. Basu, and S. Garg, ``Fault-tolerant systolic array based accelerators for deep neural network execution,'' IEEE Design & Test, vol. 36, no. 5, pp. 44-53, 2019.DOI
15 
M. A. Hanif and M. Shafique, ``Salvagednn: Salvaging deep neural network accelerators with permanent faults through saliency-driven fault-aware mapping,'' Philosophical Transactions of the Royal Society A, vol. 378, no. 2164, 20190164, 2020.DOI
16 
K. Cho, I. Lee, H. Lim, and S. Kang, ``Efficient systolic-array redundancy architecture for offline/online repair,'' Electronics, vol. 9, no. 2, 338, 2020.DOI
17 
L.-C. Chu and B. W. Wah, ``Fault tolerant neural networks with hybrid redundancy,'' Proc. of IJCNN International Joint Conference on Neural Networks, pp. 639-649, 1990.DOI
18 
H. Lee, J. Park, and S. Kang, ``An area-efficient systolic array redundancy architecture for reliable AI accelerator,'' IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 32, no. 10, pp. 1950-1954, 2024.DOI
19 
L. Deng, ``The MNIST database of handwritten digit images for machine learning research,'' IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141-142, 2012.DOI
20 
J. J. Zhang, T. Gu, K. Basu, and S. Garg, ``Analyzing and mitigating the impact of permanent faults on a systolic array based neural network accelerator,'' Proc. of IEEE 36th VLSI Test Symposium (VTS), pp. 1-6, 2018.DOI