Mobile QR Code QR CODE : Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

ISO Journal TitleJ Korean Inst. IIIum. Electr. Install. Eng.

References

1 
International Energy Agency , 2018, Renewable 2018Google Search
2 
O’Neill Barbara, 2016, Forecasting Wind, NRELGoogle Search
3 
Vermont T., 2014, New Forecasting Tool Enhance Wind Energy Integration In Idaho and Oregon, U.S Department of EnergyGoogle Search
4 
Antonanzas J., Osorio N., Escobar R., Urrarca R., Martinez-de-Prison F. J., et al , 2016, Review of Photovoltaic Power Forecasting, Solar Energy, Vol. 136, pp. 78-111DOI
5 
Smola A. J., Schölkopf B., 2004, A Tutorial on Support Vector Regression, Statistics and Computing, Vol. 12, No. 5, pp. 199-222DOI
6 
Drucker H., Burges C. J., Kaufman L., Smola A. J., et al , 1997, Support Vector Regression Machines, In Advances in neural information processing systems, pp. 155-161Google Search
7 
Hearst M. A., Dumais S. T., Osuna E., Platt J., Scholkopf B., 1998, Support vector machines, IEEE Intelligent Systems and their applications, Vol. 13, No. 4, pp. 18-28Google Search
8 
Stein M. L., 2012, Interpolation of spatial data: some theory for kriging, Springer Science & Business MediaGoogle Search
9 
Montero J. M., Mateu J., 2015, Spatial and Spatio-Temporal Geostatistical Modeling and Kriging, John Wiley & SonsGoogle Search
10 
Kim D. H., Hur J., 2018, Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method, Vol. 157, pp. 211-226DOI
11 
Nielsen T. S., Joensen A., Landberg L., Giebel G., 1998, A New Reference for Wind Power Forecasting, Wind Energy, Vol. 1, No. 1, pp. 29-34DOI
12 
Zhang J., Hodge B. M., et al , 2013, Metrics for Evaluating the Accuracy of Solar Power Forecasting, National Renewable Energy LaboratoryGoogle Search