Mobile QR Code QR CODE : Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

ISO Journal TitleJ Korean Inst. IIIum. Electr. Install. Eng.

References

1 
Tossani F., et al. , 2018, Lightning Performance of Overhead Power Distribution Lines in Urban Areas, IEEE Trans. Power Deliv., Vol. 33, No. 2, pp. 581-588DOI
2 
Napolitano F., et al. , 2018, Statistical Assessment of Lightning-Induced Over voltages in Low Voltage Lines, EEEIC / I&CPS EuropeDOI
3 
Napolitano F., Tossani F., Borghetti A., Nucci C. A., 2018, Lightning Performance Assessment of Power Distribution Lines by Means of Stratified Sampling Monte Carlo Method, IEEE Trans. Power Deliv., Vol. 33, No. 5, pp. 2571-2577DOI
4 
De Conti A., et al. , 2010, Calculation of Lightning-Induced Voltages on Overhead Distribution Lines Including Insulation Breakdown, IEEE Trans. Power Deliv., Vol. 25, No. 4, pp. 3078-3084DOI
5 
Michishita K., Hongo Y., 2012, Flashover Rate of 6.6-kV Distribution Line Due to Direct Negative Lightning Return Strokes, IEEE Trans. Power Deliv., Vol. 27, No. 4, pp. 2203-2210DOI
6 
Andreotti A., et al. , 2021, An Analytical Approach to Assess the Influence of Shield Wires in Improving the Lightning Performance Due to Indirect Strokes, IEEE Trans. Power Deliv., Vol. 36, No. 3, pp. 1491-1498DOI
7 
Paulino J. O. S., et al. , 2015, Assessment and Analysis of Indirect Lightning Performance of Overhead Lines, Electric Power Systems Research, Vol. 118, pp. 55-61DOI
8 
Mikropoulos P. N., Tsovilis T. E., 2013, Statistical Method for the Evaluation of the Lightning Performance of Overhead Distribution Lines, IEEE Trans. Dielectr. Electr. Insul., Vol. 20, No. 1, pp. 202-211DOI
9 
Nakada K., Sugimoto H., Yokoyama S., 2003, Experimental Facility for Investigation of Lightning Performance of Distribution Lines, IEEE Trans. Power Deliv., Vol. 18, No. 1, pp. 253-257DOI
10 
Cigr Working Group 33.01 , 1991, Guide to Procedures for Estimating the Lightning Performance of Transmission Lines (TB 63), CIGREGoogle Search
11 
Pinceti P., Giannettoni M., 1999, A Simplified Model for Zinc Oxide Surge Arresters, IEEE Trans. Power Deliv., Vol. 14, No. 2, pp. 393-398DOI
12 
Borghetti A., et al. , 2009, Lightning-induced Overvoltages Transferred Through Distribution Power Transformers, IEEE Trans. Power Deliv., Vol. 24, No. 1, pp. 360-372DOI
13 
Gustavsen B., Semlyen A., 1999, Rational Approximation of Frequency Domain Responses by Vector Fitting, IEEE Trans. Power Deliv., Vol. 14, No. 3, pp. 1052-1059DOI
14 
Gustavsen B., Semlyen A., 2001., Enforcing Passivity for Admittance Matrices Approximated by Rational Functions, IEEE Trans. Power Syst., Vol. 16, No. 4, pp. 955DOI
15 
Gustavsen B., 2002., Computer Code for Rational Approximation of Frequency Dependent Admittance Matrices, IEEE Power Eng. Rev., Vol. 22, No. 6, pp. 64DOI
16 
Berger K., Anderson R. B., Kroninger H., 1975, Parameters of Lightning Flashes, Electra, Vol. 41, pp. 23-37Google Search
17 
Nucci C. A., Rachidi F., Michel M. V., Mazzetti C., 1993, Lightning-Induced Voltages on Overhead Lines, IEEE Trans. Electromagn. Compat., Vol. 35, No. 1, pp. 75-86DOI
18 
Napolitano F., 2011, An Analytical Formulation of the Electromagnetic Field Generated by Lightning Return Strokes, IEEE Trans. Electromagn. Compat., Vol. 53, No. 1, pp. 108-113DOI
19 
Borghetti A., Nucci C. A., Paolone M., 2007, An Improved Procedure for the Assessment of Overhead Line Indirect Lightning Performance and Its Comparison with the IEEE Std. 1410 Method, IEEE Trans. Power Deliv., Vol. 22, No. 1, pp. 684-692DOI
20 
Borghetti A., Nucci C. A., Paolone M., 2009, Indirect-lightning Performance of Overhead Distribution Networks with Complex Topology, IEEE Trans. Power Deliv., Vol. 24, No. 4, pp. 2206-2213DOI
21 
IEEE Std 1410-2010 , 2011, IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, IEEE Std 1410-2010 (Revision IEEE Std 1410-2004), pp. 1-73Google Search