Mobile QR Code QR CODE : Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

ISO Journal TitleJ Korean Inst. IIIum. Electr. Install. Eng.

References

1 
Jeong-Ho Kim, “Cooperative control strategy of DC voltage for voltage source converter HVDC connected offshore wind farm,” Master’s Thesis, Soongsil University, 2016.URL
2 
Yun-Sik Oh, “Smart inverter modeling for voltage regulation in distribution lines with distributed generations using MATLAB/Simulink,” Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, vol. 33, no. 10, pp. 12-18, 2019.DOI
3 
Korea Energy Information & Culture Foundation, “A world changed to energy: For a sustainable future,” 2019.URL
4 
M. P. Bahrman and B. K. Johnson, “The ABCs of HVDC transmission technologies,” IEEE Power and Energy Magazine, vol. 5, no. 2, pp. 32-44, 2007.DOI
5 
D. Van Hertem and M. Ghandhari, “Multi-terminal VSC HVDC for the European supergrid: Obstacles,” Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 3156- 3163, 2010.DOI
6 
D. Elliott, et al., “A comparison of AC and HVDC options for the connection of offshore wind generation in Great Britain,” in IEEE Transactions on Power Delivery, vol. 31, no. 2, pp. 798-809, 2016.DOI
7 
J. Arrillaga, Y. H. Liu, and N. R. Watson, “Flexible power transmission: the HVDC options,” John Wiley & Sons, 2007.URL
8 
ALSTOM (Firm), “HVDC: Connecting to the future. ICON Group International,” 2010.URL
9 
E. Olsen, U. Axelsson, A. Canelhas, and S. Karamitsos, “Low frequency AC transmission on large scale offshore wind power plants,” 13th Wind Integration Workshop, 2014.URL
10 
L. Hytten, “Power Frequency Optimisation for Offshore Wind Farms,” 2015. Available: https://www.sintef.no/globalassets/project/eera-deepwind-2015/presentations/a/a2_hytten_dnvgl.pdf. (Accessed 26 October 2020).URL
11 
X. Xiang, et al., “Comparison of cost-effective distances for LFAC with HVAC and HVDC in their connections for offshore and remote onshore wind energy,” in CSEE Journal of Power and Energy Systems, vol. 7, no. 5, pp. 954-975, 2021.DOI
12 
J. L. Domínguez-García, et al., “Effect of non-standard operating frequencies on the economic cost of offshore AC networks,” Renewable Energy, vol. 44, pp. 267-280, 2012.DOI
13 
M. Dicorato, G. Forte, M. Pisani, and M. Trovato, “Guidelines for assessment of investment cost for offshore wind generation,” Renewable Energy, vol. 36, no. 8, pp. 2043-2051, 2011.DOI
14 
J. C. Olivares-Galván, F. De León, P. S. Georgilakis, and R. Escarela-Perez, “Selection of copper against aluminium windings for distribution transformers,” IET Electric Power Applications, vol. 4, no. 6, pp. 474-485, 2010.DOI
15 
J. K. Muriuki, C. M. Muriithi, L. Ngoo, and G. Nyakoe, “Review of hvdc circuit breakers topologies,” IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), vol. 12, no. 3, pp. 109-117, 2017.URL
16 
G. Stamatiou, “Techno-economical analysis of DC collection grid for offshore wind parks,” M. Sc. Thesis, 2010.URL
17 
X. F. Wang, C. J. Cao, and Z. C. Zhou, “Experiment on fractional frequency transmission system,” IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 372–377, Feb. 2006.DOI
18 
F. Kiessling, P. Nefzger, J. F. Nolasco, and U. Kaintzyk, “Overhead power lines: planning, design, construction,” Springer, 2014.URL
19 
T. Ngo, M. Lwin, and S. Santoso, “Steady-state analysis and performance of low frequency ac transmission lines,” IEEE Trans.Power Syst., vol. 31, no. 5, pp. 3873-3880, 2015.DOI