Kim Suhyeon1
Baek Myung-Hyun1
Hwang Sungmin1
Jang Taejin1
Park Kyungchul1
Park Byung-Gook1
-
(Department of Electrical and Computer Eng., and Inter-University
Semiconductor Research Center, Seoul National University, Seoul,
Korea)
Copyright © The Institute of Electronics and Information Engineers(IEIE)
Index Terms
SNN, analog synapse, analog switch, neuromorphic, synaptic array
I. INTRODUCTION
Analog synaptic devices are being investigated as one of the most important parts
of neuromorphic systems because biological synapses play a role in signal transmission
and memory effect (1). Recently, several types of emerging electronic synapse devices such as phase-change
memory (PCRAM) (2), resistive change memory (RRAM) (3,4), ferroelectric devices (5), and FET-based devices (6,7,8) have been proposed to biological synapses. These synaptic devices, such as RRAM,
MRAM, and NOR-FLASH, each have their advantages and disadvantages. The high current
operation, a poor characteristic variation, reliability, and a requirement of selectors
on RRAM and scalability on MRAM and NOR-FLASH are known issues. But The devices which
currently used in mass production are NAND flash memory and logic transistors. We
believe that we need a way to realize analog synapses with best known process and
design capabilities based on those mass-production experiences. I think that it would
be good to make NAND-flash with a similar structure to the standard cell of the logic
CMOS device. Therefore, in this paper, we propose an analog switch type synapse using
a NAND flash device and a pMOSFET.
II. NAND FLASH MEMORY FOR SYNAPSTIC DEVICE
1. NAND Array for VMM
A method of constructing a synapse array using NAND cell strings has been steadily
proposed due to its scalability and mass productivity. For VMM operation, all cells
except the target cell are connected with the corresponding NAND cell string by applying
pass voltage(V$_{\mathrm{pass}}$) as shown in Fig. 1.
Fig. 1. V$_{\mathrm{Read}}$ is applied for the output of synapse #0, otherwise V$_{\mathrm{Ppass}}$
For the weighted sum operation of the output neuron, a complex circuit is required
to sequentially apply V$_{\mathrm{read}}$ to all cells in the string and finally calculate
the weighted sum. This approach also requires an additional circuit in complex neural
networks that do not know when the input signal will come as Fig. 2.
Fig. 2. V$_{\mathrm{Read}}$ is applied for the output of synapse #0, otherwise V$_{\mathrm{pass}}$
The pre-synaptic signal is applied to V$_{\mathrm{read}}$ and V$_{\mathrm{pass}}$
according to the system clock and compares the amount of current flowing through the
string in the sense amp. The value corresponding to the entire synapse cell needs
to be accumulated through the adder before going to the postsynaptic line. This operation
method is inefficient because it requires the additional signal formation circuits
to generate pre-synaptic signals and compare and calculate string out currents. A
different algorithm is required to use NAND flash memory as a synaptic device.
III. ANALOG SWITCH FOR SYNAPSE
1. NAND String with pMOSFET for Connecting
Accumulated charge of synapse array with NAND can represent the weighted sum of neuron
input in Fig. 3(a). The NAND array is broken when one cell is turned off, so it is necessary to preserve
the current. If a specific route is connected by pMOSFET, a current path can be formed
Fig. 3(b). If a specific resistance is used instead of pMOSFET, it can make a disturbance on
NAND cell output.
Fig. 3. proposed NAND string for using synaptic array.
We can derive the total current of this series approximately. For the derivation of
a relation between synapse series current and each synapse weight. We assume binary
weight system, weight=0 or 1. k$^{\mathrm{th}}$ synapse cell is on state for total
n cells series otherwise off state. Equations describing total NAND string current
(I$_{\mathrm{total}}$) with applied the pre-synaptic input voltage (V$_{\mathrm{GS}}$)
and bit line voltage (V$_{\mathrm{BL}}$) are listed below:
Where R$_{\mathrm{off}}$ denotes off-state resistance value for no pre-synaptic input
signal case, R$_{\mathrm{on}}$ is for having a pre-synaptic input signal (V$_{\mathrm{ov}}$).
I$_{\mathrm{DS}}$ is current for each synapse cell and Vov is the difference between
V$_{\mathrm{GS}}$ and threshold voltage(V$_{\mathrm{th}}$). We can define total resistance
R$_{\mathrm{total }}$and total current I$_{\mathrm{total}}$.
There is interference due to each cell V$_{\mathrm{DS}}$ differences which can occur
depending on the position of each cell in the array. But we can assume V$_{\mathrm{DS}}$
is the same at each synapse cell. It because V$_{\mathrm{DS}}$ is very small value
due to bit line voltage(V$_{\mathrm{BL}}$) dividing by number of synapse cells. And
R$_{\mathrm{off}}$ value is not big different from R$_{\mathrm{on}}$ also.
Eq. (3) is Taylor approximation to 1$^{\mathrm{st}}$ order. We assume total number of synapse
cells is big enough to the number of on-state cells (n{\textgreater}{\textgreater}k).
2. Characteristics of Synapse
Fig. 4(a) is schematic of a proposed synapse cell. The
gates of NAND and pMOSFET are connected to the
same input. When current flows through the NAND cell,
there is no current distortion because the pMOSFET is
off. At the same time, if the synapse input is 0, the
pMOSFET will operate to provide the current. Fig. 4(b)
is the layout of the proposed synapse. This is similar to
the form of a CMOS logic circuit. The similarity of the
layout is a big advantage in the fabrication process in
terms of process variation when the logic cell and this
synapse cell process at the same time. The input value is
represented by the number of spikes. In addition, V$_{th}$
change according to the amount of charge trap of NAND
cell can represent the weight in Fig. 4(c).
Fig. 4. single synapse cell structure (a) Schematic of 1 synapse cell with 1 floating
gate (b) Design layout of 1 synapse cell (c) synapse cell characteristic by V$_{th}$
3. Scaling Comparison
Generally, NAND and NOR cell sizes are 4F$^{2}$ and 10F$^{2}$. However, the proposed
synapse device inevitably requires twice the size of the NAND due to the presence
of a pass transistor. In addition, since pMOSFET and nMOSFET are connected, additional
area loss due to well boundary impact is expected. In the end, an area of about 8F2
+ ${\alpha}$ is expected, and it is similar in terms of NOR structure and size.
IV. CIRCUIT OPERATION ANALYSIS
In the circuit operation analysis for VMM: Using the
10 cells synapse devices, we perform the spice
simulation of VMM operation. As in Fig. 5(a), excitatory
synapse and inhibitory synapse is made using 20
synapses with current mirrors, and the voltage of
membrane capacitance of Integrate-and-Fire (I&F)
system is measured.
To do this, we randomly generate a weight value
between -1 and 1 and an input signal between 0 and 100.
The input pulse uses the rate coding method and V$_{th}$ is
adjusted to the second decimal point. Then weighted sum
value calculation is listed below:
And V$_{th}$ value is listed for the inference below:
As a result of Fig. 5(b), the weighted sum and
membrane potential has a 99% correlation value. For the
perfect definition of synapse weight, membrane voltage
have to be exact linear relation. But there is some
variation. This comes from assumptions in Eqs. (1)-(3).
VDS cannot be exact same at each synapse node. And Itotal is not perfect linear function
even in region n>>k. These
two assumption can lead an accuracy degradation. Even
though existing variation, membrane voltage and
weighted sum value has a good correlation.
Fig. 5. VMM SPICE simulation setup and result (a) 10 excitatory and 10 inhibitory
synapses are implemented with current mirrors and membrane capacitor for neuron input,
(b) R$^{2}$ value is near 0.99 for a randomly generated weighted sum.
The precision of the NAND cell has a big impact on
VMM accuracy. To check the VMM accuracy, we
perform the simulation by the number of V$_{th}$ offering of
NAND cell. The R$^{2}$ value is 95% with 3bit NAND cell.
There is a significant accuracy degradation for under 2
bits NAND cell in Fig. 6. In order to secure accuracy, it
is necessary to make a sufficient V$_{th}$ range.
Fig. 6. (a) VMM correlation chart between membrane potential which is output of synapse
and weighted sum value by # of weights on NAND, (b) VMM correlation value by # of
weights on NAND.
V. BENCH MARKING RESULT WITH MNIST
Based on this synapse array, we examine the
difference in recognition rate according to ANN's
accuracy and cell variation of the proposed synapse. For
this purpose, 8×8 hand-written digit data are used as
shown in Table 1 (9).
Table 1. 8×8 hand-written digit data from Scikit-Learn (9)
Classes
|
10
|
Samples per class
|
~180
|
Total Samples
|
1,797
|
Dimensionality
|
64 (8×8)
|
Features Integers
|
0-16
|
Fig. 7 is the entire VMM architecture for MNIST
benchmarking. Program and erase operation for weight
projection is the same as usual NAND memory
architecture. The Only capacitor is added for current
integration. This membrane capacitor will connect to the
neuron circuit to fire postsynaptic spike.
Fig. 7. Entire VMM architecture for MNIST bench marking.
First, 1-layer fully-connected-network, which is a
reference, performs learning using SciKit-Learn sample
code (10). The recognition rate was 86%. The obtained
weight value infers to each NAND cell by value of
threshold voltage based on Eq. (3). And the 1,797 rate
coded input data is converted into an input signal by
modulated input frequency. SPICE simulation is
performed by HSPICE simulator. After performing spice
simulation, we pick up the largest voltage value of the
membrane capacitor. It is the result of model recognition.
We complete the correlation plot as shown in Fig. 8(a) and (b). The recognition rate has a difference by 3%
compared with ANN's.
Fig. 8. Correlation plot of 8×8 MNIST by spice simulation (a) result of 1-layer FCN
by ANN, (b) result of 1-layer FCN by SPICE simulation with weight projection which
is from ANN result.
VI. CONCLUSIONS
The analog switch type synapse using the proposed
NAND array and pMOSFET has the advantage that the
existing NAND program / erase mechanism can be used
without any change in the mass production process. At
the same time, it has the advantage of using same
architecture of standard cell unit on an industry process.
At the same time having a chance of smaller area than
silicon-based synapse due to processing with logic and
NAND synapse unit. And SPICE simulation of this
synapse inference verification of FCN network resulted
in 83% recognition rate, which is 3% lower than
reference value of ANN.
ACKNOWLEDGMENTS
This work was supported by the Brain Korea21 Plus
project in 2019 and Nano – Material Technology
Development Program through the National Research
Foundation of Korea funded by the Ministry of Science,
ICT and Future Planning (2016M3A7B4910348).
REFERENCES
Kandel E. R., 2001, The molecular biology of memory storage: a dialogue between genes
and synapses, Science, Vol. 294, No. 5544, pp. 1030-1038
Suri M., 2011, Phase change memory as synapse for ultra-dense neuromorphic systems:
Application to complex visual pattern extraction, 2011 International Electron Devices
Meeting, Washington, DC, pp. 4.4.1.-4.4.4.
Jo Sung Hyun, Chang Ting, Ebong Idongesit, Bhadviya Bhavitavya B., Mazumder Pinaki,
Lu Wei, 2011, Nanoscale memristor device as synapse in neuromorphic systems., Nano
Lett
Kwon Min-Woo, Baek Myung-Hyun, Park Jungjin, Kim Hyungjin, Hwang Sungmin, Park Byung-Gook,
2017, CMOS Analog Integrate-and-fire Neuron Circuit for Driving Memristor based on
RRAM, Journal of Semiconductor Technology and Science, Vol. 17, No. 2, pp. 174-179
Chanthbouala A., Garcia V., Cherifi Ryan, Bouzehouane K., Fusil S., Moya X., Xavier
S., Yamada Hiroyuki, Deranlot Cyrile, Mathur Neil D., Bibes Manuel, Barthelemy A.,
Grollier Julie, Oct 2012, A ferroelectric memristor, Nature Materials, Vol. 11, No.
10, pp. 860-864
Kim H., Park J., Kwon M., Lee J., Park B., March 2016, Silicon-Based Floating-Body
Synaptic Transistor With Frequency-Dependent Short- and Long-Term Memories, in IEEE
Electron Device Letters, Vol. 37, No. 3, pp. 249-252
Lin Y., 2018, A Novel Voltage-Accumulation Vector-Matrix Multiplication Architecture
Using Resistor-shunted Floating Gate Flash Memory Device for Low-power and High-density
Neural Network Applications, 2018 IEEE International Electron Devices Meeting (IEDM),
San Francisco, CA, pp. 2.4.1-2.4.4.
Kim Sangwook, Kim Sangwan, 2018, High-performance Recessed-channel Reconfigurable
Field-effect Transistor using Si-Ge Heterojunction, Journal of Semiconductor Technology
and Science, Vol. 18, No. 3, pp. 392-395
Dua D., Graff C., UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]
Pedregosa F., 2011, Scikit-learn: Machine Learning in Python, JMLR
Author
Su-Hyeon Kim received the B.S.,
M.S. degrees in the Department of
Physics from Yonsei University,
Seoul, Korea, in 2005, and 2008,
respectively.
In 2008, he joined at
Samsung Electronics, where he has
been working in the area of logic
technology development of Semiconductor R&D Center.
He is currently working toward the Ph.D. degree in
electrical and computer engineering, Seoul National
University, Seoul, Korea.
His interests include a synaptic
device for neuromorphic systems.
Myung-Hyun Baek received the B.S.
degree in Electrical Engineering in
2013 from Seoul National University
(SNU), Seoul, Korea.
He is currently
working toward the Ph.D. degree in
the department of electrical and
computer engineering, Seoul
National University, Seoul, Korea.
His main research
interests are nonvolatile memory technologies and
neuromorphic systems.
Sungmin Hwang received the B.S.,
M.S. degree in Hanyang University
in 2014.
He is currently working
toward Ph.D. degree in the
department of electrical and computer
engineering, Seoul National
University, Seoul, Korea.
His
research interests include nanoscale silicon devices, and
neuromorphic systems.
Taejin Jang received the B.S.,
degree in Electrical Engineering in
2016 from Seoul National University
(SNU), Seoul, Korea.
Kyung Jang received the B.S.,
degree in in 2014 from SungKyun-
Kwan University (SKKU), Suwon,
Korea.
He is currently working
toward Ph.D. degree in electrical
engineering in Seoul National
University, Seoul, Korea.
Byung-Gook Park received his B.S.
and M.S. degrees in electronics
engineering from Seoul National
University (SNU) in 1982 and 1984,
respectively, and his Ph.D. degree in
electrical engineering from Stanford
University in 1990.
From 1990
to1993, he worked at the AT&T Bell Laboratories, where
he contributed to the development of 0.1 micron CMOS
and its characterization.
From 1993 to 1994, he was with
Texas Instruments, developing 0.25 micron CMOS.
In
1994, he joined SNU as an assistant professor in the
School of Electrical Engineering (SoEE), where he is
currently a professor.
In 2002, he worked at Stanford
University as a visiting professor, on his sabbatical leave
from SNU.
He led the Inter-University Semiconductor
Research Center (ISRC) at SNU as the director from
2008 to 2010.
His current research interests include the design and fabrication of nanoscale CMOS,
flash
memories, silicon quantum devices and organic thin film
transistors. He has authored and co-authored over 1000
research papers in journals and conferences.
Prof. Park
has served as a committee member on several
international conferences including Micro processes and
Nanotechnology, IEEE International Electron Devices
Meeting, International Conference on Solid State
Devices and Materials, and IEEE Silicon
Nanoelectronics Workshop and served as an Editor of
IEEE Electron Device Letters.
He received “Best
Teacher” Award from SoEE in 1997, Doyeon Award for
Creative Research from ISRC in 2003, Haedong Paper
Award from the Institute of Electronic Engineers of
Korea (IEEK) in 2015.
He has served as a Committee
Member on several international conferences, including
Microprocesses and Nanotechnology, IEEE International
Electron Devices Meeting, International Conference on
Solid State Devices and Materials, and IEEE Silicon
Nanoelectronics Workshop (the Technical Program Chair
in 2005, the General Chair in 2007).
He is currently
serving as a Cooperative Vice President of IEEK and the
Board Member of the IEEE Seoul Section.