Mobile QR Code QR CODE

REFERENCES

1 
Kandel E. R., 2001, The molecular biology of memory storage: a dialogue between genes and synapses, Science, Vol. 294, No. 5544, pp. 1030-1038DOI
2 
Suri M., 2011, Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction, 2011 International Electron Devices Meeting, Washington, DC, pp. 4.4.1.-4.4.4.DOI
3 
Jo Sung Hyun, Chang Ting, Ebong Idongesit, Bhadviya Bhavitavya B., Mazumder Pinaki, Lu Wei, 2011, Nanoscale memristor device as synapse in neuromorphic systems., Nano LettDOI
4 
Kwon Min-Woo, Baek Myung-Hyun, Park Jungjin, Kim Hyungjin, Hwang Sungmin, Park Byung-Gook, 2017, CMOS Analog Integrate-and-fire Neuron Circuit for Driving Memristor based on RRAM, Journal of Semiconductor Technology and Science, Vol. 17, No. 2, pp. 174-179DOI
5 
Chanthbouala A., Garcia V., Cherifi Ryan, Bouzehouane K., Fusil S., Moya X., Xavier S., Yamada Hiroyuki, Deranlot Cyrile, Mathur Neil D., Bibes Manuel, Barthelemy A., Grollier Julie, Oct 2012, A ferroelectric memristor, Nature Materials, Vol. 11, No. 10, pp. 860-864DOI
6 
Kim H., Park J., Kwon M., Lee J., Park B., March 2016, Silicon-Based Floating-Body Synaptic Transistor With Frequency-Dependent Short- and Long-Term Memories, in IEEE Electron Device Letters, Vol. 37, No. 3, pp. 249-252DOI
7 
Lin Y., 2018, A Novel Voltage-Accumulation Vector-Matrix Multiplication Architecture Using Resistor-shunted Floating Gate Flash Memory Device for Low-power and High-density Neural Network Applications, 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, pp. 2.4.1-2.4.4.DOI
8 
Kim Sangwook, Kim Sangwan, 2018, High-performance Recessed-channel Reconfigurable Field-effect Transistor using Si-Ge Heterojunction, Journal of Semiconductor Technology and Science, Vol. 18, No. 3, pp. 392-395DOI
9 
Dua D., Graff C., UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]Google Search
10 
Pedregosa F., 2011, Scikit-learn: Machine Learning in Python, JMLRGoogle Search