References

1 
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., and McGrew, B. (2023). Gpt-4 technical report. arXivURL
2 
Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., ... and Wu, Y. (2023). Palm 2 technical report. https://doi.org/10.48550/arXiv.2303.08774DOI
3 
Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D.D., Wilie, B., Lovenia, H., Ji, Z., Yu, T., Chung, W., Do, Q.V., Xu, Y., and Fung, P. (2023). “A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity.” arXiv. https://doi.org/10.48550/arXiv.2302.04023DOI
4 
Beomi. (2023). KoAlpaca-Polyglot-12.8B. https://github.com/Beomi/KoAlpaca. (accessed on 29 August 2024)URL
5 
Caldas, C.H., and Soibelman, L. (2003). “Automating hierarchical document classification for construction management information systems.” Automation in Construction, 12(4), 395-406. https://doi.org/10.1016/S0926-5805(03)00004-9DOI
6 
Chan, A.P.C., Wong, F.K.W., Chan, D.W.M., Yam, M.C.H., Kwok, A.W.K., Lam, E.W.M., and Cheung, E. (2008). “Work at Height Fatalities in the Repair, Maintenance, Alteration, and Addition Works.” Journal of Construction Engineering and Management, 134(7), 527–535. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:7(527)DOI
7 
Cheng, M.Y., Kusoemo, D., and Gosno, R.A. (2020). “Text mining-based construction site accident classification using hybrid supervised machine learning.” Automation in Construction, 118, 103265. https://doi.org/10.1016/j.autcon.2020.103265DOI
8 
Chi, C.F., Chang, T.C., and Ting, H.I. (2005). “Accident patterns and prevention measures for fatal occupational falls in the construction industry.” Applied Ergonomics, 36, 391-400. https://doi.org/10.1016/j.apergo.2004.09.011DOI
9 
Chi, N.W., Lin, K.Y., El-Gohary, N., and Hsieh, S.H. (2016). “Evaluating the strength of text classification categories for supporting construction field inspection.” Automation in Construction, 64, 78-88. https://doi.org/10.1016/j.autcon.2016.01.001DOI
10 
Ekin, S. (2023). Prompt engineering for ChatGPT: A quick guide to techniques, tips, and best practices. Authorea PreprintsDOI
11 
Fan, H., and Li, H. (2013). “Retrieving similar cases for alternative dispute resolution in construction accidents using text mining techniques.” Automation in Construction, 34, 85-91. https://doi.org/10.1016/j.autcon.2012.10.014DOI
12 
Ghimire, P., Kim, K., and Acharya, M. (2024). “Opportunities and Challenges of Generative AI in Construction Industry: Focusing on Adoption of Text-Based Models.” Buildings, 14(1), 220. https://doi.org/10.3390/buildings14010220DOI
13 
Go, I. (2015). Basic Construction Safety Guidelines. https://www.seoul.go.kr/. (accessed on 29 August 2024)URL
14 
Halfon, A., Gretz, S., Arviv, O., Spector, A., Toledo-Ronen, O., Katz, Y., ... and Slonim, N. (2024). “Stay Tuned: An Empirical Study of the Impact of Hyperparameters on LLM Tuning in Real-World Applications.” arXiv, https://doi.org/10.48550/arXiv.2407.18990DOI
15 
Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... and Chen, W. (2021). “Lora: Low-rank adaptation of large language models.” arXiv, https://doi.org/10.48550/arXiv.2106.09685DOI
16 
Im, H.J., Kwon, Y.J., Kim, S.G., Kim, Y.K., Ju, Y.S., and Lee, H.P. (2009). “The characteristics of fatal occupational injuries in Korea’s construction industry, 1997–2004.“ Safety Science, 47(8), 1159-1162. https://doi.org/10.1016/j.ssci.2008.11.008DOI
17 
jhgan. (2021). https://huggingface.co/jhgan/ko-sroberta-multitask. (accessed on 29 August 2024)URL
18 
Kang, Y., Yang, S., and Patterson, P. (2021). “Modern Cause and Effect Model by Factors of Root Cause for Accident Prevention in Small to Medium Sized Enterprises.” Safety and Health at Work, 12(4), 505-510. https://doi.org/10.1016/j.shaw.2021.08.002DOI
19 
Korea Occupational Safety and Health Agency (KOSHA). (2010). KOSHA guide. https://oshri.kosha.or.kr/. (accessed on 29 August 2024)URL
20 
Lee, J., and Yi, J.S. (2017). “Predicting Project’s Uncertainty Risk in the Bidding Process by Integrating Unstructured Text Data and Structured Numerical Data Using Text Mining.” Applied Sciences, 7(11), 1141. https://doi.org/10.3390/app7111141DOI
21 
Lee, K., Firat, O., Agarwal, A., Fannjiang, C., and Sussillo, D. (2018). Hallucinations in neural machine translationURL
22 
Lo, C.K., and Simard, M. (2019). “Fully Unsupervised Crosslingual Semantic Textual Similarity Metric Based on BERT for Identifying Parallel Data.” Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), 206-215. https://aclanthology.org/K19-1020URL
23 
Ma, H., Wang, J., Lin, H., and Zhang, Y. (2021). “Hierarchical matching network for multi-turn response selection in retrieval-based chatbots.” Soft Computing, 25, 9609–9624. https://doi.org/10.1007/s00500-021-05699-0DOI
24 
Ministry of Emplyment and Labor (MOEL). (2023). Industrial Accident Statistics, https://www.moel.go.kr/index.do. (accessed on 29 August 2024)URL
25 
Ministry of Government Legislation (MOLEG). (2021). Serious Accidents Punishment Act Enacted on January 26, 2021. https://www.moleg.go.kr/. (accessed on 29 August 2024)URL
26 
National Occupational Healthy and Safety Commission (NOHSC). (2005). Natinal Standard for Constrution Work. https://www.safeworkaustralia.gov.au/. (accessed on 29 August 2024)URL
27 
Occupational Safety and Health Administration (OSHA). (1970). The Occupational Safety and Health Act Enacted on 1970., https://www.osha.gov/. (accessed on 29 August 2024)URL
28 
OpenAI. (2022). GPT-3.5-turbo.https://openai.com/index/chatgpt. (accessed on 29 August 2024)URL
29 
Park, H., Lee, B., Choi, H., Park, H., Jung, C., Bae, D., Seo, J., Jung, S., and Lee., D. (1997). Construction site safety management guidelines. https://www.ex.co.kr/. (accessed on 29 August 2024)URL
30 
Post, M. (2018). “A call for clarity in reporting BLEU scores.” arXiv, https://doi.org/10.48550/arXiv.1804.08771DOI
31 
Reese, C.D., and Eidson, J.V. (2006). Handbook of OSHA construction safety and health. crc pressURL
32 
Salama, D.A., and El-Gohary, N.M. (2013). “Automated Compliance Checking of Construction Operation Plans Using a Deontology for the Construction Domain.” Journal of Computing in Civil Engineering, 27(6), 681-698. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000298DOI
33 
Saurin, T.A., Formoso, C.T., and Cambraia, F.B. (2008). “An analysis of construction safety best practices from a cognitive systems engineering perspective.” Safety Science, 46(8), 1169-1183. https://doi.org/10.1016/j.ssci.2007.07.007DOI
34 
Smetana, M., Salles de Salles, L., Sukharev, I., and Khazanovich, L. (2024). “Highway Construction Safety Analysis Using Large Language Models.” Applied Sciences, 14(4), 1352. https://doi.org/10.3390/app14041352DOI
35 
Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., ... and Hashimoto, T.B. (2023). Stanford alpaca: An instruction-following llama modelURL
36 
Tian, D., Li, M., Ren, Q., Zhang, X., Han, S., and Shen, Y. (2023). “Intelligent question answering method for construction safety hazard knowledge based on deep semantic mining.” Automation in Construction, 145, 104670. https://doi.org/10.1016/j.autcon.2022.104670DOI
37 
Tixier, A.J.P., Hallowell, M.R., and Rajagopalan, B. (2017). “Construction safety risk modeling and simulation.” Risk analysis, 37(10), 1917-1935. https://doi.org/10.1111/risa.12772DOI
38 
Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., and Zhou, D. (2022). “Self-consistency improves chain of thought reasoning in language models.” arXiv, https://doi.org/10.48550/arXiv.2203.11171DOI
39 
Wei, J., Bosma, M., Zhao, V.Y., Guu, K., Yu, A.W., Lester, B., Du, N., Dai, A.M., and Le, Q.V. (2021). “Finetuned language models are zero-shot learners.” arXiv, https://doi.org/10.48550/arXiv.2109.01652DOI
40 
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., and Zhou, D. (2022). “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.” arXiv, https://doi.org/10.48550/arXiv.2201.11903DOI
41 
Wu, C., Lin, W., Zhang, X., Zhang, Y., Xie, W., and Wang, Y. (2024). “PMC-LLaMA: toward building open-source language models for medicine.” arXiv, https://doi.org/10.48550/arXiv.2304.14454DOI
42 
Wu, Y., Wu, W., Xing, C., Zhou, M., and Li, Z. (2016). “Sequential matching network: A new architecture for multi-turn response selection in retrieval-based chatbots.” arXiv, https://doi.org/10.48550/arXiv.1612.01627DOI
43 
Yue, S., Chen, W., Wang, S., Li, B., Shen, C., Liu, S., Zhou, Y., Xiao, Y., Yun, S., Huang, X., and Wei, Z. (2023). “Disc-lawllm: Fine-tuning large language models for intelligent legal services.” arXiv, https://doi.org/10.48550/arXiv.2309.11325DOI
44 
Zhang, F., Fleyeh, H., Wang, X., and Lu, M. (2019). “Construction site accident analysis using text mining and natural language processing techniques.” Automation in Construction, 99, 238-248. https://doi.org/10.1016/j.autcon.2018.12.016DOI
45 
Zhong, B., He, W., Huang, Z., Love, P. E. D., Tang, J., and Luo, H. (2020). “A building regulation question answering system: A deep learning methodology.” Advanced Engineering Informatics, 46, 101195. https://doi.org/10.1016/j.aei.2020.101195DOI